
LX4580
Data Sheet

Revision 3.1

October 11, 2002

Lexra, Inc.

Proprietary and Confidential

DO NOT COPY

COPY NUMBER

LX4580 Data Sheet Revision 3.1 October 11, 2002

Lexra Proprietary and Confidential
Copyright 2002 Lexra, Inc.
ALL RIGHTS RESERVED

MIPS and MIPS32 are trademarks and/or registered trademarks of MIPS Technologies, Inc.
Other trademarks are the property of their respective owners.

DO NOT COPY

.

LX4580 Lexra Inc. Proprietary & Confidential i

Rev 3.1 October 11, 2002 DO NOT COPY

Table of Contents

Chapter 1. LX4580 Product Overview
1.1. Introduction .. 1
1.2. Key Features ... 2
1.3. Specifications .. 3
1.4. LX4580 Architecture .. 3

1.4.1. LX4580 CPU .. 3
1.4.2. Fine-Grained Hardware Multi-Threading (HMT) .. 4

1.5. Interfaces .. 5
1.6. Software Support .. 5

1.6.1. Operating Systems .. 5
1.6.2. Development Tools .. 5

Chapter 2. MIPS32 Implementation Specifics
2.1. MIPS32 Implementation Specifics Overview .. 7
2.2. MIPS32 Instructions ...7

2.2.1. LL/SC ... 7
2.2.2. SYNC ... 8
2.2.3. PREF .. 8
2.2.4. CACHE .. 9
2.2.5. WAIT ... 9
2.2.6. Divide (all variants) .. 9
2.2.7. UDI ... 9

2.3. CP0 Registers ... 10
2.4. Interrupts ... 13
2.5. Exceptions .. 14

2.5.1. Reset Context Wait and EJBOOT .. 15
2.5.2. DM Wait and EJTAG (Debug) Exceptions .. 15

2.6. Address Spaces ... 15
2.6.1. Non-Coherence for Different Access Types .. 16

2.7. Endianness .. 16
2.8. EJTAG .. 16
2.9. CP0 Hazards ... 17
2.10. Performance Counters .. 17
2.11. Release 2 Architecture Support .. 19

2.11.1. Release 2 Interrupt Modes, Exceptions, Shadow GPRs 19
2.11.2. Hazard Barrier Instructions .. 19
2.11.3. Field, Rotate, Shuffle Instructions .. 20
2.11.4. User Access to Hardware Registers ... 20
2.11.5. CP0 Register Changes .. 20
2.11.6. 64-bit Coprocessor (FPU) .. 21
2.11.7. 1KB Pages .. 21

Chapter 3. Reset (RST)
3.1. Reset Overview ... 23
3.2. Reset Distribution ... 23
3.3. Reset Operation .. 24
3.4. Reset External LX4580 Interfaces .. 24

ii Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

Chapter 4. LX4580 CPU
4.1. LX4580 CPU Overview ... 25
4.2. LX4580 CPU Core ... 25
4.3. Instruction Cache .. 26
4.4. Data Cache .. 26
4.5. Cache Line Replacement Algorithm .. 26
4.6. CPU Error Handling ... 27

4.6.1. Bus Error Handling (IBE and DBE) .. 27
4.6.2. Interrupt Error Response (NMI) ... 27

Chapter 5. CBUS_Z Interface (ZBI)
5.1. CBUS_Z Interface Overview ... 29
5.2. CBUS_Z Interface Signal List .. 29
5.3. CBUS_Z Endian Mode ... 30
5.4. CBUS_Z Line Read Interleave Order ... 32
5.5. CBUS_Z Read Completion .. 32
5.6. CBUS_Z Transaction Types ... 32
5.7. CBUS_Z Protocol ... 32
5.8. CBUS_Z Transaction Timing Diagrams .. 33

5.8.1. Back-to-Back Sub-Line Writes with Busy ... 33
5.8.2. Line Writes ... 34
5.8.3. Read Request .. 34
5.8.4. Returning Read Data .. 35

Chapter 6. EC Interface (ECI)
6.1. Overview .. 37
6.2. EC Interface Signals ... 38
6.3. EC Interface Endian Mode ... 38
6.4. EC Interface Pending Requests .. 40
6.5. EC Interface Gasket Overview ... 41
6.6. Supported Configurations ... 41
6.7. Implementation Guidance for Endian Mode .. 42

6.7.1. Consistency of Endian Mode in the System ... 42
6.7.2. Address Invariance ... 42
6.7.3. Data Invariance .. 42
6.7.4. Reverse Endian Support Not Recommend ... 43
6.7.5. Endian Mode and Unaligned Load/Store ... 43

6.8. CBUS_Y Interface .. 44
6.8.1. CBUS_Y Endian Mode .. 45
6.8.2. CBUS_Y Command Encoding ... 46
6.8.3. RLE & RLME Eviction Address ... 47

6.9. IBUS Interface .. 48
6.9.1. IBUS Header Encoding .. 48

6.10. ECI Actions on CBUS_Y Commands ... 49

Chapter 7. Interrupts
7.1. Interrupt Overview ... 51

7.1.1. Cross Context Interrupt Request Register (CCI_Req) 52
7.1.2. CCI_IntPend Register (One per context) ... 53
7.1.3. CCI_IntMask Register (One per context) .. 53

Chapter 8. EJTAG (EJ)
8.1. EJTAG Differences from 2.0.0. .. 56

LX4580 Lexra Inc. Proprietary & Confidential iii

Rev 3.1 October 11, 2002 DO NOT COPY

8.1.1. EJTAG TAP Registers ... 56
8.1.2. EJTAG Registers in FF3 (DRSeg) ... 58

8.2. Description of LX4580 CPU Specific EJTAG features ... 59
8.2.1. Disable Other Contexts (DOC) EJTAG Control Register bit 6 59
8.2.2. Context Select (CXS) EJTAG Control Register Bits 30:29 59
8.2.3. Context in Debug Mode (CDM) EJC Bits 28:27 ... 59
8.2.4. CNTXUse & CNTX in Breakpoint Control Registers 60
8.2.5. Precise Data Breaks .. 60
8.2.6. Data Value Break Loads .. 60
8.2.7. EJTAG_ADDR (36-bit) ... 60
8.2.8. PC Trace Buffer & TAC .. 60
8.2.9. Instruction Replay .. 64
8.2.10. DMwait ... 64
8.2.11. Debug Mode Overrides Disable Context ... 65
8.2.12. EJTAG BOOT .. 65
8.2.13. The Lexra Probe ... 65
8.2.14. Access to EJTAG Memory Space .. 65

Chapter 9. Interfaces
9.1. Interfaces .. 67

iv Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

LX4580 Lexra Inc. Proprietary & Confidential vii

Rev 3.1 October 11, 2002 DO NOT COPY

List of Figures

Figure 1: LX4580 Diagram .. 3
Figure 2: Reset Overview... 23
Figure 3: LX4580 CPU and System Interface ... 25
Figure 4: CBUS_Z Interface (ZBI) .. 29
Figure 5: CBUS_Z Back-to-Back Sub-Line Writes with Busy ... 33
Figure 6: CBUS_Z Line Write ... 34
Figure 7: CBUS_Z Read Requests.. 34
Figure 8: CBUS_Z Sub-Line Read Data and DBUSY .. 35
Figure 9: Read Data for a Line Read Request.. 35
Figure 10: EC Interface (ECI) .. 37
Figure 11: EC Interface Gasket (ECI) .. 41
Figure 12: LX4580 Interrupt Logic.. 51
Figure 13: LX4580 ETJAG Organization.. 55
Figure 14: CPU EJTAG Block Diagram.. 61

viii Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

LX4580 Lexra Inc. Proprietary & Confidential ix

Rev 3.1 October 11, 2002 DO NOT COPY

List of Tables

Table 1: Summary of LX4580 Interfaces ... 5
Table 2: Standard CP0 Registers .. 10
Table 4: Interrupt Sources... 13
Table 3: Implementation Dependent CP0 Registers ... 13
Table 5: Exception List ...14
Table 6: CntxSel (bits 13:11) Field of PerfCnt Control Registers.. 17
Table 7: Event Field of PerfCnt Control Registers ... 17
Table 8: Hardware Register Values .. 20
Table 9: Reset External Interface.. 24
Table 10: Cache Line Replacement Algorithm .. 26
Table 11: CBUS_Z Signal List ... 29
Table 12: Effect of Endian Mode on CBUS_Z... 31
Table 13: EC Interface Signals ... 38
Table 14: Effect of Endian Mode on EC Interface ... 39
Table 15: Supported Configurations ... 41
Table 16: Big Endian Unaligned Load/Store Address Adjustments 43
Table 17: Little Endian Unaligned Load/Store Address Adjustments.................................... 44
Table 18: CBUS_Y Request Interface.. 44
Table 19: CBUS Reply Interface .. 45
Table 20: Effect of Endian Mode on CBUS_Y .. 45
Table 21: CBUS_Y Commands.. 46
Table 22: CBUS_Y Source Encoding... 47
Table 23: CBUS_Y Destination Encoding ... 47
Table 24: CBUS_Y Reply Encoding .. 47
Table 25: IBUS Request Interface .. 48
Table 26: IBUS Reply Interface ... 48
Table 27: IBUS Commands .. 48
Table 28: ECI Actions on CBUS_Y Requests.. 49
Table 29: ECI Actions on IBUS Replies .. 49
Table 30: EJTAG TAP Registers.. 56
Table 31: EJTAG DRSeg Registers.. 58
Table 32: COP0 EJTAG registers... 59
Table 33: Interface Summary.. 67

x Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

LX4580 Lexra Inc. Proprietary & Confidential 1

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 1. LX4580 Product Overview

1.1. Introduction

The LX4580, designed to support Lexra’s family of network communication ICs, is the highest performance
MIPS32™ processor optimized for “High-Touch” packet processing applications. Based on Lexra’s 3rd
generation 7-stage pipeline, the LX4580 is able to achieve 3x the performance of other 32-bit CPU platforms.

Enabling this technology break-through is Lexra’s innovative fine-grained Hardware Multi-Threading
(HMT). HMT dramatically improves system performance by its ability to alternate the execution of four
hardware threads. The processor stays 100% utilized even while multiple threads are servicing cache misses.
From a system perspective, the LX4580 overcomes the fundamental bottleneck to application performance -
memory latency.

Additional benefits due to HMT are an increase in pipeline efficiency as well as removal of timing-critical
forwarding paths. Stalls due to load-to-use are typically eliminated while commonly used features like branch
prediction are altogether no longer needed. Collectively this results in die area saving and an increase in
processor performance.

The LX4580 includes features like the Coprocessor Interface (CI) and User Defined Instruction (UDI)
interface are used to specialize the processor to the target application.

The LX4580 supports the new MIPS32™ Release 2.0 ISA to leverage a rich legacy of tools, application
software, and operating systems available for the MIPS architecture. With its optional Memory Management
Unit (MMU) the LX4580 supports Linux® SMP running on the hardware threads, in single and multi-
processor systems.

Software views the LX4580 as four virtual CPUs or hardware threads running in parallel. Cache coherency is
maintained for data accesses among the multiple contexts. Applications using concurrent kernel threads or
user processes will run on the LX4580 virtually unchanged while taking full advantage of HMT.
Alternatively, a single threaded RTOS such as VxWorks® can run on one thread while other threads function
as coprocessors.

The LX4580 CPU provides the ultimate in both performance and flexibility required to execute demanding
high touch applications. The LX4580 CPU implements the MIPS32 ISA, with additional specialized
instructions for optimized packet processing. Peak processor performance is 700 Dhrystone 2.1 MIPS. The
CPU incorporates Lexra’s innovative fine-grained Hardware Multi-Threading (HMT) technology. As a
result, high CPU performance can be sustained even while L1 cache misses are serviced.

The CPU includes a 64-bit MIPS ECtm interface for connection to main memory and other peripherals. This
interface provides access to a wide range of SoC interconnect and modules such as DRAM controllers, PCI
and AMBA bridges and custom I/O interfaces. The optional CBUS interface provides an easy to use but
powerful alternative for connection to proprietary or third party buses.

Target applications for the LX4580 include:

• Enterprise Security Systems
These systems provide specialized services such as VPN, firewall and intrusion detection
for traffic between the enterprise LAN or data center and WAN. The LX4580 can be
used for either Linux-based application services or for “front-end” network processing in
these systems.

• Web Appliances
Typical products include Switches, Web Directors, Web Caches. The LX4580 provides
consolidated functionality with strong Layer 4-7 decision making for policy and content-
base load balancing, security, session and site persistence based on HTTP cookies, IP
address, etc.

Chapter 1. LX4580 Product Overview

2 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

• Network Attached Storage (NAS) Servers
New generation NAS Servers provide remote storage-on-demand while lowering
administration costs and leverage the learning curve of 3rd party internet technology. The
LX4580 provides TCP termination, iSCSI protocol conversion and security services.

1.2. Key Features

Processor

• 7-stage execution pipeline
• MIPS32™ Release 2.0 ISA

• Specialized instructions for packet processing
• Lexra ISA extensions:

• Hash with key size 4 to 24 bits
• Dual 16-bit ones-complement add

• Fine-grained Hardware Multi-Threading (HMT)
• Four hardware threads of execution
• Unique register set, interrupts and TLB per thread

Local Memory Interface

• Up to 64 KB L1 Instruction Cache
• Up to 64 KB L1 Data Cache
• 4-way set associative
• Configurable cache line size (16, 32, 64 and 128 bytes)
• Conforms to MESI coherency protocol
• Write-through or write-back Data Cache
• Up to 1 MB fixed local instruction/data memory

System Bus Interface

• Optional CBUS or EC interfaces
• Split transaction (CBUS) or pipelined (EC)
• 64-bit data-path
• Multi-master support
• Burst mode

Memory Management Unit (MMU)

• 4 KB page size
• Supports 36-bit physical addresses
• 2-entry ITLB, 4-entry DTLB, 24-entry JTLB (per thread)

Multiply-Accumulate Unit (MAC)

• Two-cycle 32x32b multiply, multiply-accumulate

Enhanced JTAG (EJTAG) 2.0.0 Debug

• Single-stepping
• Address and data breakpoints
• Full-speed real-time PC trace
• Supports multi-processor debug

1.3. Specifications

LX4580 Lexra Inc. Proprietary & Confidential 3

Rev 3.1 October 11, 2002 DO NOT COPY

User Defined Instructions (UDI)

• Application-specific ALU instruction extensions
• Supports 3-register operand and 2-register/immediate formats

Coprocessors

• An application-specific coprocessor can be attached to the Coprocessor Interface (CI)

1.3. Specifications

• Technology: 0.13µm CMOS
• 500 MHz Processor Clock (worst-case)
• 3.8 mm2 Core Area
• 360 mW Power (worst-case)
• Operating Temperature: 125° C junction
• Supply Voltage: 1.2 V nominal

1.4. LX4580 Architecture

1.4.1. LX4580 CPU

The LX4580 incorporates four (4) LX4580 CPUs, illustrated in Figure 1. The LX4580 is a complete RISC
processor subsystem, optimized for high-performance packet processing.

The major blocks are the Register file and ALU (RALU), Coprocessor 0 (CP0), the local memory interfaces
(LMI) to up to 64KB instruction cache and 6K4B data cache.

Figure 1: LX4580 Diagram

Data Cache
RAM

up to 64 KB

Instruction
Local Memory

Interface

EJTAG

data

address

System
Interface

(CBUS
or

EC)

Data Cache
RAM

up to 64 KB

MMU
(opt)

24 entry
JTLB

(per context)

Register File
(one per context)

CPU

4 contexts
7-stage pipe
MIPS32TM

MAC UDI

COP2

ALU CP0

Fixed Inst
RAM

up to 1 MB

to debug
probe

Fixed Data
RAM

up to 1 MB

Instructions

Data Data
Local Memory

Interface

Chapter 1. LX4580 Product Overview

4 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

Lexra’s LX4580 CPU implements the full Release 2 MIPS32 instruction set. The MIPS32 optional and
recommended features included in the CPU are detailed in Chapter 2. A number of implementation-specific
issues are also documented in Chapter 2. Lexra has extended the MIPS32 ISA with additional instructions for
optimized packet processing. These instructions are described in Chapter 2. The CPU includes an MMU and
support 36-bit physical addresses.

The CPU execution pipeline is 7-stage and exclusively uses the rising edge of the processor clock. The 7-
stage pipeline permits a full cycle for address register to data output register for both instruction cache read
and data cache read. As a result the CPU pipeline achieves maximum performance for its implementation
technology and methodology and will readily port to future technologies.

1.4.2. Fine-Grained Hardware Multi-Threading (HMT)

The LX4580 CPU incorporates Lexra’s proprietary implementation of fine-grained Hardware Multi-
Threading (HMT). Although HMT is transparent to software it provides significant performance advantages
to the LX4580 customer that deserve attention in this overview.

In Lexra’s implementation, instructions are issued round-robin from four alternate contexts. Each context has
an independent program counter and general register file. Other software visible state is also replicated as
detailed in Chapter 2. In the absence of an L1 cache miss, the four contexts support four independent
execution threads.

In typical network processing programs data cache miss rates are high and a single-threaded processor is idle
much of the time. The problem can be mitigated somewhat with a second level cache, offering faster service
time than main memory. However, in Lexra’s implementation of HMT, as few as two active threads can
maintain 100% CPU utilization while cache misses from the other two threads are being served.

Additional performance benefits from HMT result from the following:

• All timing-critical internal forwarding paths are eliminated. As a result, for a specific
technology and design methodology, high processor clock speed is achieved.

• Branch prediction is not required. There are sufficient cycles between issue slots so that
branch outcome can be correctly resolved without prediction. Other high-end RISC
architectures have devoted significant silicon area and power to minimizing stalls from
branch prediction failures.

• Load-to-use delay is minimized. The 7-stage pipeline would normally require two load-to-
use delay cycles. With HMT, the load-to-use delay is zero or one cycle depending on the
number of actively executing threads. As a result, the frequency of load interlock stalls is
reduced.

Lexra’s simulations indicate that if 3% of instructions cause an cache miss, HMT delivers a 3X performance
benefit compared to a similar single issue CPU. This performance benefit can be realized in applications with
sufficient thread parallelism. Assigning each thread one or more independent packet flows allows HMT to be
fully exploited in the LX4580 target applications.

1.5. Interfaces

LX4580 Lexra Inc. Proprietary & Confidential 5

Rev 3.1 October 11, 2002 DO NOT COPY

1.5. Interfaces

Table 1 summarizes the interfaces provided by the LX4580.

1.6. Software Support

1.6.1. Operating Systems

Two operating systems are provided for the LX4580:

• Linux®, version 2.4 and higher, with full SMP support running on all CPUs and hardware
threads. Full source code for the Linux® kernel is available from MontaVista™ and the
Hardware Abstraction Layer is available from Lexra and MontaVista™.

• VxWorks® version 5.4 running on one thread. The Hardware Abstraction Layer is
available from Wind River.

1.6.2. Development Tools

Extensive On-Chip Debug Features

• EJTAG
• Performance Counters

Complete Development Platform

• C/C++ development tool chain
• Development board
• Device drivers and abstraction layer
• Sample code

Table 1: Summary of LX4580 Interfaces

Name Qty Performance Function

EC Interfacea

a. RTL is configurable to support EC interface or CBUS interface.

1 500 MHz (CPU clock) Interface option to system devices. See

Chapter 6 and MIPS “ECtm Interface Speci-
fication”, Revision 1.05.

CBUS Interfacea 1 500 MHz (CPU clock) Interface option to system devices. See
Chapter 5.

CI 1 500 MHz (CPU clock) Coprocessor interface (COP2). See XREF.

UDI 1 500 MHz (CPU clock) User Defined Instructions. See XREF.

EJTAG 1 40 MHz clock. Scan chain debug.
Conforms to EJTAG 2.0.
Provides PC-trace. Multi-processor support.

Chapter 1. LX4580 Product Overview

6 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

LX4580 Lexra Inc. Proprietary & Confidential 7

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 2. MIPS32 Implementation Specifics

2.1. MIPS32 Implementation Specifics Overview

The MIPS32 architecture defines certain features as optional (or recommended), in which case they may be
completely omitted from a compliant implementation. Other MIPS32 features are defined as implementation
dependent, in which case one or more choices must be supported for compliance. Finally there are optional
extensions that an implementation may provide.

The purpose of this chapter is to detail the implementation dependent features of the LX4580 CPU. The
specifics of each of the following areas is discussed in its own section:

• Instructions
• CP0 Registers
• Interrupts
• Exceptions
• Address Spaces
• Endianness
• EJTAG
• CP0 Hazards
• Release 2 Features

2.2. MIPS32 Instructions

This section describes implementation specific details of the following MIPS32 instructions:

• LL/SC
• SYNC
• PREF
• CACHE
• WAIT
• Divide (all variants)
• UDI

2.2.1. LL/SC

The unit of memory that is used to determine whether the SC should fail is one cache line. That is, after the
LL, a write to any byte in the line by any other entity will cause the SC to fail. In addition:

• Any load, store or CACHE instruction between the LL and the SC by the same context,
when not in debug mode, will cause the SC to fail.

• Any ERET between the LL and SC by the same context will cause the SC to fail.

• Any store to the cache line by a different context in the same CPU between the LL and SC
will cause the SC to fail.

• A load or store between the LL and the SC by the same context in debug mode, may cause
the SC to fail in rare instances. The precise conditions are described below.

Chapter 2. MIPS32 Implementation Specifics

8 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

The remaining implementation of this feature relies solely on the state of the cache line within the L1 data
cache in the CPU as follows:

Note that there is no architecturally visible CP0 LLAddr register.

For HMT, a variant of the LLAddr register (just the data cache Way and Index) is used for two purposes:

• Another context is not allowed to cause a replacement eviction of the line between the LL
and SC. To prevent this, the particular data cache Way and Index (of the line used by the
LL) are saved while the SC is pending or until it is guaranteed to fail, whichever comes
first.

• Another context in the processor can store to the line, forcing the SC to fail. This is
detected by the L1 data cache using the saved Way and Index.

• If all four contexts have a pending SC for the same Index (each to a different Way), then
no Way of that Index is available for replacement eviction. Any load or store by any
context that is not in debug mode, will enable a Way for eviction without impacting the
other contexts because it can cause its own context SC to fail. However, a load or store in
debug mode that requires a replacement eviction in the same Index will use the saved Way
of the context that is executing in debug mode. This rare case will also cause the SC to fail
for the context in question.

2.2.2. SYNC

There is only one outstanding data cache miss (for either loads or stores) at a time for each context.

An uncached load prevents further progress by a context until the load data returns.

Therefore all cached loads/stores and uncached loads are strongly ordered for any given context.

To cover the ordering of uncached stores, SYNC flushes uncached stores previously executed by the same
context, preventing forward progress by context executing the SYNC until all such stores are Acked by their
targets.

2.2.3. PREF

The instruction is treated as NOP.

On LL, if cache miss, request line Shared

 else line is already Shared or Modified (okay)

On SC, if dcache miss.............................. SC fails

 else if already Modified......................... SC passes

 else request line upgrade to Modified

 if invalidated before request completes........ SC fails

 else .. SC passes

2.2.4. CACHE

LX4580 Lexra Inc. Proprietary & Confidential 9

Rev 3.1 October 11, 2002 DO NOT COPY

2.2.4. CACHE

The following operations are supported:

• I Index Invalidate
• D Index WritebackInvalidate / Index Invalidate
• I,D Index Store Tag
• I,D Hit Invalidate
• D Hit WritebackInvalidate / Hit Invalidate
• D Hit Writeback

 The following are not implemented:

• S,T anything
• I Fill
• I,D Index Load Tag
• I,D Fetch and Lock (there are no Locks in instruction or data cache)

Since the instruction and data caches are shared by all four contexts in the CPU, it is the responsibility of
software to avoid conflicting CACHE instruction execution. Note that the Data cache Writeback operations
and the Instruction cache Invalidate operations are generally safe across contexts since they do not discard
potentially modified data. If the Store Tag operation is only used for initialization, that too should be safe to
use. Finally, the Data cache Hit Invalidate should be used with caution since it discards data that may have
been written by a context different than the one executing the CACHE instruction.

2.2.5. WAIT

Only Code 0 is supported.

When the WAIT instruction is executed by a context in the LX4580 CPU, that context is suspended from
further execution. The only way to restart a context after completion of a WAIT instruction is with an enabled
interrupt to that context. The EPC will point to the instruction after the WAIT.

Since the other contexts continue execution, the WAIT instruction does not cause the CPU clocks to stop nor
are the CPU caches disabled. Any power savings from the WAIT instruction would be on a gate-level basis in
that reduced pipeline activity would reduce the circuit switching current. The primary benefit of the WAIT
instruction is to reduce contention among contexts for the CPU pipeline slots while one or more contexts are
merely waiting for some external event. For this reason it is preferred to a software spin loop.

2.2.6. Divide (all variants)

The divider detects when the dividend has leading zeroes, reducing its latency in such cases.

2.2.7. UDI

The following User Defined Instructions are implemented:

• HASH rd, rt, keysize
Hash to Key. The 5-bit keysize is a value k in the range 4-24. The 32 source bits contained
in rt are hashed to form a key of k bits which is stored in rd[k-1:0]. The remaining bits of
rd are zeroed. If k is not in the range 4-24, the results are unpredictable.

Format: 31:26 011100 (Special2), 25:11 zero,rt,rd, 10:6 keysize - 1, 5:0 110000 (Hash)

Chapter 2. MIPS32 Implementation Specifics

10 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

• ACS2 rd, rs, rt
Dual Add for Checksum. This instruction performs dual 16-bit ones complement addition.
Considering all quantities as unsigned 16-bit integers, add rs[15:0] to rt[15:0] and
independently add rs[31:16] to rt[31:16]. For each addition if there is a carry out of the
most significant bit of its result, add one to that result to form its final result. The final
results are stored in rd[15:0] and rd[31:16]

Format: 31:26 011100 (Special2), 25:11 rs,rt,rd, 10:6 zero, 5:0 110001 (Acs2)

2.3. CP0 Registers

This section describes implementation specific details of the CP0 registers. In Table 2 each of the standard
(MIPS32 Release 2) CP0 registers is listed, together with an indication if the register is not implemented. If it
is implemented there may be details on how the implementation handles certain fields in the register. For
registers that are implemented, the column labeled HMT indicates whether it is implemented independently
for each context (4) or just once per CPU (1). In Table 3, the implementation specific CP0 registers are
described. All of the implementation specific CP0 registers are implemented independently for each context
under HMT except CVSTag and CXCtrl (although in CXCtrl the context bits in the CPUNum field are in fact
unique by context).

Table 2: Standard CP0 Registers

Name Num Sel HMT Field Implementation Specific Information

Index 0 0 4 6-bits

Random 1 0 4 see notea

EntryLo0,1 2,3 0 4

PFN 36-bit PA supported

C only values 2 or 3 supported

Context 4 0 4

PageMask 5 0 4 only 4KB and 64MB pages, see noteb

MaskX always 2#11 (no 1KB pages)

PageGrain 5 1 not implemented

Wired 6 0 4

HWREna 7 0 4

BadVAddr 8 0 4

Count 9 0 1 counts cpu clocks

EntryHi 10 0 4

Compare 11 0 4

2.3. CP0 Registers

LX4580 Lexra Inc. Proprietary & Confidential 11

Rev 3.1 October 11, 2002 DO NOT COPY

Status 12 0 4

CU321 always 0 (no FPU, no coprocessors)

RE always 0 (no ReverseEndian)

RP,FR,MX,PX always 0

TS always 0

SR always 0

Impl always 0

KX,SX,UX always 0

R0 always 0

IntCtl 12 1 4

IPTI always 7 (Timer interrupt in IP7)

IPPCI always 7 (PerfCnt interrupt in IP7)

EIC, VS always 0

SRSCtl 12 2 1 always 0

SRSMap 12 3 not implemented

Cause 13 0 4

DC all contexts must set this to stop Count

WP always 0

ExcCode see notec

EPC 14 0 4

PRId 15 0 1 (lx4580): 0x000bd101

EBase 15 1 4

CPUNum same value as CXCtrl.CPUNum

Config 16 0 4

M 1

BE reset to 1 or 0 per config pin

KU,K23 value 3 (for Fixed Mapping Table, when
MT=3)

AT always 0

AR always 1

MT reset to 1 or 3 per config pin

VI always 0

K0 reset to 2, may be written values 2 or 3

Table 2: Standard CP0 Registers (Continued)

Name Num Sel HMT Field Implementation Specific Information

Chapter 2. MIPS32 Implementation Specifics

12 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

Config1 16 1 1

M 0

MMU-1 (24 entry) 23

IS,IL,IA 64-byte linesize, 64KB or 32KB or 16KB
Icache size, 4 ways

DS,DL,DA 64-byte linesize, 64KB or 32KB or 16KB
Dcache size,4 ways

C2,MD always 0

PC 1

WR,CA always 0

EP 1

FP always 0

Config2 16 2 not implemented

Config3 16 3 not implemented

LLAddr 17 0 not implemented

WatchLo 18 not implemented

WatchHi 19 not implemented

Debug 23 0 4

DEPC 24 0 4

PerfCnt 25 0-7 1 4 counters with controls.
See Section 2.10

ErrCtl 26 0 1 not implemented

CacheErr 27 1 not implemented

TagLo 28 0,2 1 always 0

DataLo 28 1,3 not implemented

TagHi 29 0,2 always 0

DataHi 29 1,3 not implemented

ErrorEPC 30 0 4

DESAVE 31 0 1

a. The Random register is decremented on every instruction completion. The two most recently
used values by TLBWR in a TLBRefill exception are saved, and are never used in a subse-
quent TLBWR. TBD: an LFSR is used to further control the decrement of Random.

b. Only bits 26:25 of the Mask field in the PageMask register are implemented. Writing ones to
these bits signifies a 64MB page. All other bit positions return zeroes on reads.

c. The Cause register ExcCode field can have the following values: Int, Mod, TLBL, TLBS,
AdEL, AdES, IBE, DBE, Sys, Bp, RI, CpU, OV, Tr, CacheErr.
The Cause register ExcCode can never have the following values: FPE, C2E, MDMX,
WATCH, MCheck.

Table 2: Standard CP0 Registers (Continued)

Name Num Sel HMT Field Implementation Specific Information

2.4. Interrupts

LX4580 Lexra Inc. Proprietary & Confidential 13

Rev 3.1 October 11, 2002 DO NOT COPY

2.4. Interrupts

The MIPS32 architecture defines eight interrupts, which are visible as the interrupt pending bits IP7:0 in the
CP0 Cause register. In Table 4 the source of each of these pending interrupts is indicated.

Table 3: Implementation Dependent CP0 Registers

Name Num Sel Bits Field Implementation Specific Information

CXCtrl 16 6

31 CXTaS Test and Set bit. Is set to 1 after any

reada

30:24 0

23:16 SW Software usable Read/Write field

15:12 0

11:8 DC3:0 Disable context in this CPU

7:5 0

4:0 CPUNum Same as EBASE.CPUNuma

CVSTag 16 7

31:0 CVSTag ReadOnly for Lexra Internal Use

a. The CXTaS bit allows atomic updates to the remaining fields of the CXCtrl register. A con-
text which reads this bit as one, should not update any fields. A context which reads this bit
as zero should restore it to zero whether or not it updates other fields.

The CPUNum is a chip-wide unique identifier for the current thread of execution. The two
least significant bits are the context number within the CPU. This value is also readable
from the CPUNum field of the EBase CP0 register that is defined by MIPS32 Release 2 or,
if enabled in User mode, using the Release 2 RDHWR instruction specifying the CPUNum
hardware register. Using those other methods of obtaining CPUNum avoids the need to
check and possibly clear CXTaS.

Table 4: Interrupt Sources

Interrupt Definition Generation

IP0 Software 0 Write to Cause IP0

IP1 Software 1 Write to Cause IP1

IP2 Hardware 0 CPU cross context interrupts (See Section 4.2.3)

IP3 Hardware 1 External interrupts (See Section 4.2.1)

IP4 Hardware 2 External interrupts (See Section 4.2.1)

IP5 Hardware 3 External interrupts (See Section 4.2.1)

IP6 Hardware 4 External interrupts (See Section 4.2.1)

IP7 Hardware 5 Logically OR Timer interrupt with Performance Counter interrupt.

Chapter 2. MIPS32 Implementation Specifics

14 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

2.5. Exceptions

All of the exceptions that are defined by the MIPS32 architecture are in Table 5. The relevant implementation
specific aspects are indicated.

Table 5: Exception List

Exception Implementation Specifics

Reset

SoftReset implemented like Reset

Debug SingleStep

Debug Interrupt

Imprecise
DebugDataBreak

Loads with address+data match

not implemented

NMI External input pin

MachineCheck not implemented

Interrupt see Section 2.4, "Interrupts"

Deferred Watch not implemented

Debug
InstructionBreak

Watch Ifetch not implemented

Address Error Ifetch

TLB Refill Ifetch

TLB Invalid Ifetch

Cache Error Ifetch not implemented

Bus Error Ifetch

SDBBP

Coproc Unusable

Reserved Inst

Execution
Exception

Overflow, Trap, BREAK, SYSCALL

Precise Debug
DataBreak1

Loads with address match only. All stores

Watch not implemented

Address Error Data

TLB Refill Data

TLB Invalid Data

TLB Modified Data

Cache Error Data not implemented

Bus Error Data

Precise Debug
DataBreak2

not implemented (Loads with address+data match are always
treated as Imprecise Debug DataBreak exceptions)

2.5.1. Reset Context Wait and EJBOOT

LX4580 Lexra Inc. Proprietary & Confidential 15

Rev 3.1 October 11, 2002 DO NOT COPY

2.5.1. Reset Context Wait and EJBOOT

When the CPU is reset, only Context 0 is enabled. This is accomplished by the hardware initializing the value
of the DC bits in the CXCTRL register so that all contexts other than 0 are disabled. It is the responsibility of
the Reset handler that runs in Context 0 to enable the other contexts by clearing their DC bits. When its DC
bit is cleared, each of the other contexts will begin execution of the Reset handler. As indicated in Table 2
each context has its own ErrorEPC (used to “return” from the reset exception) and each context can control
where it begins execution after it completes the Reset handler.

As described in Section 3.3, the CPU can optionally begin execution at the time of reset by fetching
instructions in debug mode from the EJTAG probe. From the CPU point of view, this functionality is similar
to the EJBOOT feature of EJTAG 2.5. The extensions to EJTAG 2.0 that control this feature are described in
Chapter 8. As in the case of all Reset exceptions, only Context 0 begins execution. Hence only Context 0
enters debug mode in this case. The other contexts begin execution at the standard Reset exception vector in
normal mode after their DC bits are cleared.

2.5.2. DM Wait and EJTAG (Debug) Exceptions

The LX4580 CPU implements a DM Wait feature which prevents more than one context from executing in
Debug mode at any given time. As noted in Table 2 there is only one instance of various CP0 registers (such
as DESAVE) used to support Debug mode. Furthermore, the EJTAG probe software is unlikely to support
intermixed accesses to the Dmseg and Drseg regions. Therefore, after one context begins executing in Debug
Mode (due to an EJTAG exception) any other context which takes an EJTAG exception is placed in the DM
Wait queue. While in the DM Wait state, the context does not issue any instructions. When the first context
leaves Debug Mode (by executing a DERET instruction), the next context in the DM Wait queue resumes
execution (in the EJTAG exception handler).

Furthermore, the EJTAG implementation for the LX4580 CPU has an additional feature which optionally
allows an EJTAG exception in one context to immediately place all other contexts in the CPU into the DM
Wait queue, suspending their execution. When the first context leaves Debug Mode (by executing its
DERET), the other contexts resume execution (at whatever point they were suspended). This feature allows
the EJTAG probe software to gain control of the entire CPU without needing to put all contexts into Debug
Mode simultaneously.

An additional feature of the LX4580 CPU to be noted is that Debug Mode for a context overrides the DC bit
for that context. This allows the EJTAG probe to force a context to enter Debug Mode (using the DINT
EJTAG exception) even if the context is disabled for normal execution. It also prevents a context that is
executing in Debug Mode from being disabled by another context, which could hang the EJTAG probe.

2.6. Address Spaces

Supervisor Mode is not supported.

Kseg2 is supported (instead of Ksseg).

36 Physical Address bits are supported.

The only Memory access types supported are values 2 (uncached) and 3 (cacheable).

Kseg0 can be either uncached or cacheable according to the K0 field of the CP0 Config register.

When the ERL field of the CP0 Status register has value 1, Kuseg is an unmapped, uncached segment and all
2**31 bytes are translated. This is the situation upon reset.

Chapter 2. MIPS32 Implementation Specifics

16 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

As noted in the CP0 Config register MT field, at reset, the TLB can be disabled in which case the Fixed
Mapping Table will be used. In this case, as noted in the CP0 Config register KU,K23 field definitions,
kuseg, kseg2 and kseg3 will always be cacheable (field value 3).

2.6.1. Non-Coherence for Different Access Types

The MIPS32 architecture specifies that results of loads or stores to a location using one memory access type
that follow loads or stores to the same location using a different memory access type are unpredictable in
general. The architecture states that an implementation specific sequence can enforce coherence between
such accesses. For the LX4580 CPU, the only two access types are cacheable and uncached. By performing a
CACHE instruction with the Hit Writeback Invalidate operation between the accesses, the coherence can be
enforced. The address used for the CACHE instruction may have either the cacheable or uncached access
type. This implies that the required CACHE instruction may use the address from either of the accesses so
that it can be done immediately after the first access or immediately before the second access, in either case
using the same base register and offset as the access in question.

2.7. Endianness

At reset BigEndian or LittleEndian is selected via an external configuration pin.

Reverse endianness is not supported. In MIPS32 Release 2 the WSBH instruction can be used when endian
swap is needed. See Section 2.11.3.

2.8. EJTAG

The CPU generally supports the EJTAG 2.0 specification in a manner consistent with the MIPS32
architecture. The exceptions to this are in the following areas:

• PC Trace
• Data Break Exceptions
• HMT Extensions

For PC Trace, the EJTAG 2.0 concept of external trace signals is not supported. This is due to the higher
speed of the CPU and the multi-context nature of the LX4580 CPU pipeline. Instead, an on-chip trace buffer
is used to capture information about instruction execution. The controls for the trace buffer allow tracing of a
single context or tracing of all contexts of the LX4580 CPU simultaneously. The trace buffer and associated
controls are described Section 8.2.8.

For Debug Data Break exceptions, the CPU implements the concept of Precise Data Breaks that is defined in
the EJTAG 2.5 specification. In particular, for Loads, only the address match applies. For Stores, both the
address and data match (if enabled) apply. Imprecise Data Breaks, which would require data match for
Loads, are not supported because the LX4580 CPU often resolves Loads for a given context in the
background of execution of other contexts.

As noted in Section 2.5.2 only a single context of the LX4580 CPU is allowed to execute in Debug Mode at
any given time. Furthermore, if the EJTAG Control Register “Disable Other Contexts” (DOC) bit is set when
any context enters Debug Mode, all other contexts suspend execution. As indicated in Table 2 each context
has its own CP0 Debug and DEPC registers to provide independent context control of EJTAG and to hold the
DEPC for each context that is in DM Wait state. On the other hand, there is only one DESAVE register that is
shared by all contexts since it is only needed during execution in Debug Mode.

For both Instruction and Data Breaks, the match logic is extended to include an optional match against the
context number.

2.9. CP0 Hazards

LX4580 Lexra Inc. Proprietary & Confidential 17

Rev 3.1 October 11, 2002 DO NOT COPY

For EJTAG Breaks, an additional field in the EJTAG Control Register is used to indicate whether all contexts
are to be interrupted, or just a specific context is to be interrupted.

2.9. CP0 Hazards

In all cases the implementation meets or exceeds the “typical” requirements for instruction spacing to
avoid CP0 hazards as described in the MIPS32 architecture specification.

2.10. Performance Counters

The LX4580 CPU implements four performance counters, as noted in Table 2. Each counter can select from
the same set of events to count, and each counter can count the selected event for all contexts, or for one
particular context. The format of the counters and their control registers follows the MIPS32 Release 2
specification, with one Lexra extension (the CntxSel field) in bits 13:11 of the control registers, as defined in
Table 6. The Event field (bits 10:5) of the MIPS32-specified counter control registers is defined in Table 7.

Because there is only one set of performance counters, they are shared by all contexts and it is the
responsibility of software to control their use by more than one context, if so desired. One particular aspect of
the MIPS32-specified control registers that is specific to the LX4580 CPU is the IE field, which indicates that
a Performance Counter Interrupt should become pending under certain conditions. In the LX4580 CPU, the
IE field applies to the context that most recently wrote the control register in question.

Table 6: CntxSel (bits 13:11) Field of PerfCnt Control Registers

Value (bits 13:11) Context to Count

000 Count Events for all Contexts

100 Count Events for Context 0

101 Count Events for Context 1

110 Count Events for Context 2

111 Count Events for Context 3

others reserved

Table 7: Event Field of PerfCnt Control Registers

Value (bits 10:5) Event Counted

000000 retired instructions

000001 replayed instructions

000010 instruction fetch (valid new D-stage)

000011 Icache instruction fetch

000100 Icache miss

000101 Uncached instruction fetch

Chapter 2. MIPS32 Implementation Specifics

18 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

000110 Dcache loada

000111 Dcache storea

001000 Dcache load miss

001001 Dcache store miss

001010 Dcache load or storea

001011 Dcache load or store miss

001100 Uncached load or storea

001101 Writeback for replacement

001110 Writeback for inquiry

001111 Invalidate for inquiry

010000 Nop for inquiry

010001 Pipeline stall for any reason

010010 Pipeline stall for Icache fill

010011 Pipeline stall for Dcache fill

010100 Pipeline stall for store from store queue

010101 Pipeline stall for write buffer full

010110 execution exception (Ov,Trap,BREAK,SYSCALL)

010111 TLB refill exception - Instruction

011000 TLB refill exception - Data

011001 TLB invalid exception - Instruction

011010 TLB invalid exception - Data

011011 TLB modified exception

011100 any TLB exception

011101 ITLB miss

011110 DTLB miss

011111 Interrupt

100001 any exception

100010 Store Conditional instruction (pass or fail)

100011 Store Conditional Fail

others reserved (no count)

a. Counts replayed and retired versions. The number of replays does
not significantly contribute to the overall count.

Table 7: Event Field of PerfCnt Control Registers

Value (bits 10:5) Event Counted

2.11. Release 2 Architecture Support

LX4580 Lexra Inc. Proprietary & Confidential 19

Rev 3.1 October 11, 2002 DO NOT COPY

2.11. Release 2 Architecture Support

The LX4580 CPU supports the MIPS32 Release 2 Architecture Changes. Those changes include numerous
optional and implementation dependent features as well as several required features. The following sections
provide detail on the LX4580 implementation. As a quick summary, the following is a list of all of the
Release 2 features and their support in the LX4580 CPU:

• Vectored Interrupts (not supported)
• External Interrupt Controller (not supported)
• Programmable Exception Vector Base (supported)
• Atomic Interrupt Enable/Disable (supported)
• Disable Count register (supported)
• GPR Shadow Registers (not supported)
• Field, Rotate, Shuffle Instructions (supported)
• Hazard Barrier Instructions (supported)
• User Hardware Register access (supported)
• CP0 register changes (supported)
• 64-bit FPU (not supported)
• 1KB page size (not supported)

2.11.1.Release 2 Interrupt Modes, Exceptions, Shadow GPRs

The Release 2 Architecture defines a Compatibility interrupt mode which is equivalent to the Release 1
interrupt mode. This is the only Release 2 interrupt mode supported by the LX4580 CPU. The Vectored and
External Interrupt Controller (EIC) modes are not supported. GPR Shadow Registers are not supported.

As noted in Section 2.4, the Timer and Performance Counter interrupts are presented as IP7. Therefore the
IPTI and IPPCI fields of the Release 2 IntCtl register have that value. The other fields of IntCtl are always
zero. The Cause register fields TI and PCI are implemented to provide a direct indication of Timer and
Performance Counter interrupts. Since EIC mode is not supported, the Status and Cause registers never use
the IPL and RIPL formats for interrupt priority levels.

Because there is only a single Count register shared by all contexts, the DC (Disable Count) bit in the Cause
register only has an effect if all contexts set their individual DC bit. Otherwise the Count register continues to
run.

The Release 2 EBase register is fully implemented. Within the EBase register, the least significant bits of the
CPUNum field reflect the context number within the LX4580 CPU. That is, each context reads a unique
CPUNum value from its EBase register. There is one EBase register per context so that each can
independently set its exception base value.

The Release 2 EI and DI (Enable and Disable Interrupt) instructions are implemented as required.

Because Shadow Register and Vectored Interrupts are not implemented, the SRSCtl register is always read as
zeroes and SRSMap is not implemented. Furthermore, the RDPGPR and WRPGPR instructions simply
move the contents of one GPR to another within the executing context’s GPR register set.

2.11.2. Hazard Barrier Instructions

The Release 2 instructions EHB, JALR.HB, JR.HB and SYNCI are implemented by the LX4580 CPU to
eliminate execution and instruction hazards as described in the Release 2 Architecture.

Chapter 2. MIPS32 Implementation Specifics

20 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

One implementation dependent aspect of the SYNCI instruction concerns address exceptions. The LX4580
CPU will not take an AdEL for a reference by SYNCI to kernel space while in user mode.

2.11.3. Field, Rotate, Shuffle Instructions

The following Release 2 instructions are implemented as required. It is worth noting that a programming note
in the Release 2 specification indicates how the WSBH instruction can be used to swap endianness.

• EXT Extract Bit Field
• INS Insert Bit Field
• ROTR Rotate Right
• ROTRV Rotate Right Variable
• SEB Sign-Extend Byte to Word
• SEH Sign-Extend Halfword to Word
• WSBH Word Swap Bytes Within Halfwords

2.11.4. User Access to Hardware Registers

The Release 2 instruction RDHWR (Read Hardware Register) is implemented as required. The CP0 register
HWREna is also implemented as required to conditionally enable a User mode program to read one or more
of the defined registers. The values that are supplied when the RDHWR instruction is executed (if the
relevant register is enabled for reading) are shown in Table 8.

2.11.5. CP0 Register Changes

All of the changes and additions to CP0 registers that are associated with the Release 2 architecture are
reflected in Table 2, "Standard CP0 Registers". Beyond the changes and additions associated with Release 2
features that are described in other sections of this document, a few more CP0 register changes are included
in the LX4580 CPU to be compliant with the Release 2 architecture.

In particular, the Config, Config2, and Config3 have a few more fields defined. Since the Config2 and
Config3 fields all refer to features that are not supported in the LX4580 CPU, these registers are not
implemented.

The optional WatchHI register has some fields added, but since the LX4580 does not implement the Watch
registers, these are not implemented.

The PerfCnt control registers have a W-bit added which only applies to MIPS64 implementations and so is
always 0 on the LX4580 CPU.

Table 8: Hardware Register Values

Number Name HMT Implementation Specific Information

0 CPUNum 4 Same as CP0 EBASE.CPUNum

1 SYNCI_Step 1 64

2 CC 1 Same as CP0 Count register

3 CCRes 1 1

2.11.6. 64-bit Coprocessor (FPU)

LX4580 Lexra Inc. Proprietary & Confidential 21

Rev 3.1 October 11, 2002 DO NOT COPY

2.11.6. 64-bit Coprocessor (FPU)

Since the LX4580 does not support any coprocessors, the Release 2 changes to support 64-bit coprocessors,
and in particular a 64-bit FPU, are not implemented. The instructions associated with this Release 2 feature
will all take Coprocessor Unusable exceptions as required.

2.11.7. 1KB Pages

The Release2 architecture extends the PageMask register by a pair of bits and several other CP0 registers are
extended or modified if 1KB pages are to be supported. Also, if 1KB pages are to be supported, a PageGrain
register is required.

The LX4580 CPU does not support the 1KB page feature. Therefore, the PageGrain register is not
implemented and the changed formats of other registers are not implemented. The extra two bits of
PageMask are hard coded to 2#11 as seems to be required.

Chapter 2. MIPS32 Implementation Specifics

22 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

LX4580 Lexra Inc. Proprietary & Confidential 23

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 3. Reset (RST)

3.1. Reset Overview

The LX4580 employs a locally sampled reset strategy - synchronous resets registered at the block level.

The reset strategy ensures the following:

• Complete initialization of the LX4580 by the assertion of one external pin.

• Reset debug by EJTAG. The CPU can be placed in a state whereby they will all receive a
debug exception when reset and will fetch their reset vector from EJTAG probe space.

• Reset of flip-flops in multiple clock domains. For this reason reset must remain asserted
until it is registered in each domain in the design.

• Due to the synchronous nature of resets all clocks must be running when reset is asserted.
This includes external interface clocks.

• When reset is asserted all block-level signals must go to an inert state (e.g. for a bus the
arbiter must have grant de-asserted during resets). This allows blocks in different clock
domains to come out of reset at different times.

• Two external reset pins are provided for power up and debug reset.

3.2. Reset Distribution

The reset system is distributed across the design. Each block will contains a reset flip-flop which samples the
chip-level reset in its clock domain. The output of the reset flip-flop is fed to all the flip-flops in that block.

Figure 2: Reset Overview

CRESET_N

JTAG_RST_N

EJTAG

CPUCLK

All other logic

LX4580

Chapter 3. Reset (RST)

24 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

3.3. Reset Operation

A cold-boot sequence would be as follows:

1. CRESET_N is asserted.

2. CRESET_N is de-asserted.

3. Context 0 of the CPU starts executing instructions from the reset vector.

4. The software will initialize the multiple context environment and the peripherals.

A typical multiple CPU EJTAG boot sequence would be as follows:

1. CRESET_N is asserted.

2. CRESET_N is de-asserted.

3. The EJTAG probe is connected to the CPU in turn setting the ProbeEn bit of the CPU’s EJTAG
Control Register.

4. The Probe then asserts JTAG_RST_N. This resets everything in the LX4580 apart from the
EJTAG ProbeEn flop.

5. JTAG_RST_N is de-asserted the CPU jumps to the debug exception vector at 0xFF200200
from where the system is under EJTAG probe control.

3.4. Reset External LX4580 Interfaces

Table 9: Reset External Interface

Signal Name Direction Description

CRESET_N input Cold Reset.

JTAG_RST_N input Connection from the EJTAG probe.

LX4580 Lexra Inc. Proprietary & Confidential 25

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 4. LX4580 CPU

4.1. LX4580 CPU Overview

This chapter describes the CPU’s caches.

The LX4580 CPU includes the following features:

• 500 MHz operation.
• 7-stage pipeline.
• Supports Release 2 MIPS32 instruction set.
• Four hardware contexts with fine-grained Hardware Multi-Threading (HMT).
• 64, 32, or 16 KByte 4-way set associative instruction cache.
• 64, 32, or 16 KByte 4-way set associative writeback, allocate on write, data cache.
• Performance counters.

4.2. LX4580 CPU Core

The LX4580 CPU core implements the full Release 2 MIPS32 instruction set as described in Chapter 2.
The major blocks of the CPU core are the Register file and ALU (RALU), Control Processor (CP0) and

Figure 3: LX4580 CPU and System Interface

CBUS
Requests and

Request Replies

Data
Req/Rep

Data
Cache

Controller

Instruction
Cache

Controller

System
Interface

SRAM

Data Store
and Tags

RALU

4 x
register file

CP0

4 x
control regs

MMU

4 x
TLB

LX4580 CPU core

SRAM

Inst Store
and Tags

mux

Inst
Bus

Data
Bus

Inst
Req/Rep

EJTAG

EJTAG
Req/Rep

LX4580 CPU

Chapter 4. LX4580 CPU

26 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

Memory Management Unit (MMU). Architecturally visible registers in these blocks are replicated to provide
a separate copy for each of the CPU contexts.

4.3. Instruction Cache

The LX4580 CPU includes a 4-way set associative instruction cache that operates at the processor clock
speed. The instruction cache is organized in 64-byte lines, with Valid and Invalid states.

4.4. Data Cache

The LX4580 CPU includes a 4-way set associative data cache that operates at the processor clock speed.
Data in the cache is organized in 64-byte lines.

4.5. Cache Line Replacement Algorithm

When a new line must be brought into the instruction cache or data cache, it may be necessary to evict a line
that is currently held. The caches use a 2 bit Most Recently Filled (MRF) field to implement the replacement
algorithm. This value is stored as an extra two bits in tag 0 RAM and is updated any time fill data is returned
to the cache. On a fill, the stored MRF value indicates which way is currently being filled, so at any point in
time this value represents the most recently filled line.

When the data cache needs to allocate a location for a new line, it first examines the valid bits of all 4 ways. If
any of the 4 ways are invalid, the smallest number way (0->3) that is invalid is selected. If all 4 ways are
valid, the way equal to ((MRF + 1) mod 4) is selected.

The instruction cache does not examine the valid bits in its replacement algorithm. It simply selects the way
equal to ((MRF + 1) mod 4) as shown in the last 4 rows of Table 10.

When the data cache has misses for more than one context to the same cache index, it tracks the replacement
Way for each of them and must update the MRF bit in the order that the misses were allocated. When more
than one context misses to the same cache index, the instruction cache simply suspends the second context
without making a request. After the first miss is resolved, the suspended context resumes execution and
(assuming it misses again) then makes its request.

Table 10: Cache Line Replacement Algorithm

Tag state MRF Way selected

Way 0 invalid xx Way 0a

a. This row does not apply to the instruction cache, which
ignores the valid bits in its replacement algorithm.

Way 0 valid, Way 1 invalid xx Way 1a

Way 0,1 valid, Way 2 invalid xx Way 2a

Way 0,1,2 valid Way 3 invalid xx Way 3a

Way 0-3 valid 00 Way 1

Way 0-3 valid 01 Way 2

Way 0-3 valid 10 Way 3

Way 0-3 valid 11 Way 0

4.6. CPU Error Handling

LX4580 Lexra Inc. Proprietary & Confidential 27

Rev 3.1 October 11, 2002 DO NOT COPY

Within the data cache, lines may be locked using the Load Linked (LL) instruction. When one thread
executes an LL, that line is locked until a Store Conditional (SC) instruction is executed or some other
operation breaks the lock. (See Section 2.2.1) If a line is locked, it cannot be replaced. If the algorithm above
selects a line that is locked, the algorithm will increment the way by 1 (way + 1 mod 4) and choose that way.
If that way is also locked the algorithm increments again until it finds a way that does not have a locked line.

4.6. CPU Error Handling

4.6.1. Bus Error Handling (IBE and DBE)

When a Bus Error is detected, it is reported to the CPU and context associated with the request. Within the
CPU the request which caused the Bus Error must have been one of the following:

• Instruction Fetch (cached or uncached)
• Data Access with Response (typically a read or cache fill)
• Data Access without Response (typically a write or eviction)

For an instruction fetch, the Bus Error replaces the response that would have contained the expected data.
The context is marked as IBE Pending. The Icache state machine for the context is released (with no change
in the cache if the request was a cached instruction fetch). The context is released from its suspended state so
that it can take the IBE exception, as described below.

For a data access with response, the Bus Error replaces the response that would have contained the expected
data. The context is marked as DBE Pending. The Dcache state machine for the context is released. If a
replacement eviction was required, the cache line will be left in the Invalid state. If no eviction was required,
the data cache is unchanged. If a GPR was to be loaded with the data, the value of the GPR is unpredictable
(writing zeroes or leaving the GPR unchanged would not be any more useful to software). The context is
released from its suspended state so that it can take the DBE exception, as described below.

For a data access without response, the Bus Error is an essentially asynchronous event. The context is marked
DBE Pending. If the context is suspended (for cache misses or any other reason) at the time it is marked DBE
pending, it remains suspended until the associated conditions are resolved. At that time it takes the DBE
exception, as described below.

When a context that is IBE or DBE pending resumes execution and is selected for issue to the pipeline, its
instruction fetch is inhibited. Instead, a benign instruction is inserted into the pipeline. When that instruction
reaches the end of the pipeline, the context takes an IBE or DBE exception, as appropriate (with IBE having
higher priority if both are pending). The pending state is cleared and the context begins execution of the
exception handler as per the MIPS32 standard.

Note that it is possible for a context to become IBE or DBE pending while it is executing an exception
handler. Nothing in the MIPS32 architecture prevents such a scenario. In this case, a second level of
exception handler is entered for the IBE or DBE.

4.6.2. Interrupt Error Response (NMI)

An external NMI signal is an input to the LX4580 CPU. When the signal makes a 0 to 1 transition, all
contexts are set to the NMI Pending state (not architecturally visible to software). A context in that state will
take an NMI exception the next time that it issues an instruction flow that is not in Debug Mode. In
particular, if a context is suspended (for a cache miss, for example) or disabled (via the CXCTRL
register) it will not take the NMI exception until it is no longer suspended or disabled.

When a context that is NMI Pending is selected for issue to the pipeline, its instruction fetch is inhibited.
Instead, a benign instruction is inserted into the pipeline. When that instruction reaches the end of the

Chapter 4. LX4580 CPU

28 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

pipeline, the context takes an NMI exception, the NMI pending state is cleared (for that context) and the
context begins execution of the NMI exception handler as per the MIPS32 standard.

Note that the MIPS32 standard for NMI exceptions requires that the ERL and NMI bits be set in the CP0
Cause register. Also note that the entry point for the NMI exception handler is located in uncached space (it is
the same entry point as the Reset handler). The ERL bit forces accesses to kuseg to be unmapped and
uncached as if they were accesses to kseg1, which allows saving registers using R0, and avoidance of data
cache errors if present.

Since all contexts become NMI pending simultaneously, it is the responsibility of the NMI exception handler
to determine the first context to take the exception and, if desired, to disable the other contexts when they take
the NMI exception. If it is desired to perform EJTAG debug of the NMI exception handler, an Instruction
Break can be placed at the point where the NMI handler branches out of the Reset handler.

LX4580 Lexra Inc. Proprietary & Confidential 29

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 5. CBUS_Z Interface (ZBI)

5.1. CBUS_Z Interface Overview

The chapter describes the LX4580’s CBUS_Z interface option, which is one of two interfaces options
supported by the LX4580. The CBUS_Z Interface (ZBI) translates the CPU’s internal busses into a unified
interface that may connect directly to the user system. The ZBI can also connect to an application specific

translation layer to support other bus protocols. The LX4580 supports the MIPS ECtm Interface as an
alternative to the CBUS_Z interface. See Chapter 6.

The LX4580 CBUS_Z interface provides a 64-bit data path and operates at 1x the CPU core clock rate.

5.2. CBUS_Z Interface Signal List

Table 11 summarizes the LX4580’s CBUS_Z signals.

Table 11: CBUS_Z Signal List

Figure 4: CBUS_Z Interface (ZBI)

Name Direction Function

CBUS_ZREQO output 0 - no request, 1 - processor is initiating a request

CBUS_ZBUSYI input 1 - External logic cannot accept request. The current CBUS_Z
request, if any, is ignored by external logic.

0 - External logic is ready to accept a request.

CBUS_ZADDRO[35:0] output Address

CBUS_ZREADO output 1=Read, 0=Write

CBUS_ZSYNCO output 1=Sync request, 0=Normal Request (CBUS_ZREAD will indicate
write on sync cycles)

CBUS_ZDATAO

CBUS_ZDATAI

CBUS_ZREQO

LX4580
CPU

CBUS_ZBUSYI

CBUS_ZRDYI

CBUS_ZDBUSYO

CBUS_ZADDRO

CBUS_ZREADO

36

64

CBUS_ZSYNCO

CBUS_ZSZO2

CBUS_ZLINEO
64

CBUS_ZLTIDO
2

CBUS_ZUCO

CBUS_ZSRCO2

CBUS_ZLTIDO
2

Chapter 5. CBUS_Z Interface (ZBI)

30 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

5.3. CBUS_Z Endian Mode

The LX4580 is bi-endian. A static input pin, CFG_BIGENDIAN, determines the configured endian mode of
the processor and the CBUS_Z interface. The memory contents shown below apply to the examples
presented in this section.

CBUS_ZSZO[1:0] output Transfer size
 2’b00 - 1 byte
 2’b01 - 2 bytes
 2’b10 - 3 bytes
 2’b11 - 1 word
 This signal is don’t care when CBUS_ZLINEO is asserted.

CBUS_ZLINEO output 1 - line access, 0 - single access

CBUS_ZDATAO[63:0] output Write Data

CBUS_ZLTIDO[1:0] output Local thread ID

CBUS_ZUCO output 1 - uncached access, 0 - cached access

CBUS_ZSRCO[1:0] output transaction source (within LX4580):
 2’b00 Instruction Cache
 2’b01 Data Cache
 2’b10 EJTAG
 2’b11 reserved

CBUS_ZRDYI input Read data is available

CBUS_ZDBUSYO output 1 - LX4580 is not ready to receive Data. External logic must hold
CBUS_ZDATAI, CBUS_ZLTIDI, and CBUS_ZVALTYPEI until
CBUS_ZDBUSYO is deasserted.

0 - LX4580 is ready to receive Data.

CBUS_ZDATAI[63:0] input Read Data

CBUS_ZLTIDI[1:0] input Thread associated with Read Data

CBUS_ZVALTYPEI[1:0] input Indicates read data type:
 2’b00 Instruction Cache
 2’b01 Data Cache
 2’b10 EJTAG
 2’b11 reserved

byte address hex contents

0 88

1 99

2 AA

3 BB

4 CC

5 DD

6 EE

7 FF

Name Direction Function

5.3. CBUS_Z Endian Mode

LX4580 Lexra Inc. Proprietary & Confidential 31

Rev 3.1 October 11, 2002 DO NOT COPY

The program visible behavior of all cacheable and uncacheable loads and stores conform to the formats
presented in Table 12. The CBUS_Z command is not shown in the table and can be inferred from the size of
the valid data in the CBUS_Z data patterns.

For the purpose of the unaligned load and store instructions (LWL and LWR) the address bits shown in
CBUS_Z columns of Table 12 are adjusted values, not the raw address computed by the instruction. For
LWL in little endian mode and LWR in big endian mode, the two low order address bits are forced to zero.
For all other cases the address bits are unchanged.

Table 12: Effect of Endian Mode on CBUS_Z

Inst and
addr[2:0]

Big Endian Little Endian

CBUS_Z Addr/Dataa

a. A dash in this column indicates the data is undefined.

Regb

b. A dash in this column indicates the register contents are not affected
(loads) or are ignored (stores).

CBUS_Z Addr/Dataa Regb

SB/LB 0 0 / 88------ -------- 00000088 0 / -------- ------88 00000088

1 1 / --99---- -------- 00000099 1 / -------- ----99-- 00000099

2 2 / ----AA-- -------- 000000AA 2 / -------- --AA---- 000000AA

3 3 / ------BB -------- 000000BB 3 / -------- BB------ 000000BB

4 4 / -------- CC------ 000000CC 4 / ------CC -------- 000000CC

5 5 / -------- --DD---- 000000DD 5 / ----DD-- -------- 000000DD

6 6 / -------- ----EE-- 000000EE 6 / --EE---- -------- 000000EE

7 7 / -------- ------FF 000000FF 7 / FF------ -------- 000000FF

SH/LH 0 0 / 8899---- -------- 00008899 0 / -------- ----9988 00009988

2 2 / ----AABB -------- 0000AABB 2 / -------- BBAA---- 0000BBAA

4 4 / -------- CCDD---- 0000CCDD 4 / ----DDCC -------- 0000DCC

6 6 / -------- ----EEFF 0000EEFF 6 / FFEE---- -------- 0000FFEE

SW/LW 0 0 / 8899AABB -------- 8899AABB 0 / -------- BBAA9988 BBAA9988

4 4 / -------- CCDDEEFF CCDDEEFF 4 / FFEEDDCC -------- FFEEDDCC

double wordc

c. Double word transfers only occur as part of a line read or write.

0 / 8899AABB CCDDEEFF n/a 0 / FFEEDDCC BBAA9988 n/a

LWL/SWL 0 0 / 8899AABB -------- 8899AABB 0 / -------- ------88 88------

1 1 / --99AABB -------- 99AABB-- 0 / -------- ----9988 9988----

2 2 / ----AABB -------- AABB---- 0 / -------- --AA9988 AA9988--

3 3 / ------BB -------- BB------ 0 / -------- BBAA9988 BBAA9988

4 4 / -------- CCDDEEFF CCDDEEFF 4 / ------CC -------- CC------

5 5 / -------- --DDEEFF DDEEFF-- 4 / ----DDCC -------- DDCC----

6 6 / -------- ----EEFF EEFF---- 4 / --EEDDCC -------- EEDDCC--

7 7 / -------- ------FF FF------ 4 / FFEEDDCC -------- FFEEDDCC

LWR/SWR 0 0 / 88------ -------- ------88 0 / -------- BBAA9988 BBAA9988

1 0 / 8899---- -------- ----8899 1 / -------- BBAA99-- --BBAA99

2 0 / 8899AA-- -------- --8899AA 2 / -------- BBAA---- ----BBAA

3 0 / 8899AABB -------- 8899AABB 3 / -------- BB------ ------BB

4 4 / -------- CC------ ------CC 4 / FFEEDDCC -------- FFEEDDCC

5 4 / -------- CCDD---- ----CCDD 5 / FFEEDD-- -------- --FFEEDD

6 4 / -------- CCDDEE-- --CCDDEE 6 / FFEE---- -------- ----FFEE

7 4 / -------- CCDDEEFF CCDDEEFF 7 / FF------ -------- ------FF

Chapter 5. CBUS_Z Interface (ZBI)

32 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

5.4. CBUS_Z Line Read Interleave Order

The line read operation reads a sequence of data beats from memory corresponding to the size of a cache line.
The cache line size affects how many cycles are required to transfer the entire line. A 32 byte line size is
assumed here.

The CBUS_Z target transfers read data starting with word zero first. With word zero first operation, the target
transfers eight 64-bit beats of data in sequence, starting at the nearest 32-byte-aligned address smaller or
equal to the address that the initiator drives. In other words, the target starts the transfer at the beginning of the
line containing the requested address.

5.5. CBUS_Z Read Completion

External logic may manage CBUS_Z read completion in one of the following ways:

1. Pended. One read request is outstanding at a time. The CBUS_Z is unavailable for other
requests between the time the read request is issued and read data is returned. External logic
keeps CBUS_ZBUSYI asserted until the read response.

2. Pipelined. Multiple read requests are outstanding a time. Read responses occur in the same
order that the read request is made.

3. Split. Multiple read requests are outstanding at a time. Read responses can be returned in a
different order than the request.

When the read management technique is Pipelined or Split, write requests can be issued while reads are
pending. For read response data, 2.5 lines of data buffering is provided. Read requests can be issued until the
amount of pending data is equal to the available data buffering. Pending reads can be any combination of the
following:

• One ICACHE read per thread.

• One DCACHE read per thread.

• ONE EJTAG read.

5.6. CBUS_Z Transaction Types

The following transaction types are supported by the CBUS_Z interface:

• Sub-line read.

• Line read.

• Sub-line write.

• Line write.

• Sync. This transaction occurs when CBUS_ZSYNCO is asserted. Other signals behave
as in a sub-line write transaction. Address and data should be ignored.

5.7. CBUS_Z Protocol

The transaction request protocol is controlled with CBUS_ZREQO output and CBUS_ZBUSYI input.

1. The CBUS_ZREQO output is asserted by the ZBI to initiate an access to external logic. Addi-
tional CBUS_Z* outputs are driven by the ZBI to provide the transaction details.

5.8. CBUS_Z Transaction Timing Diagrams

LX4580 Lexra Inc. Proprietary & Confidential 33

Rev 3.1 October 11, 2002 DO NOT COPY

2. CBUS_ZREQO remains asserted until the CBUS_ZBUSYI is not asserted by external logic.

For a write transaction, the transaction is completed after step 2. For a read transaction, additional steps
control the return of read data by the external logic, using the CBUS_ZRDYI input and the
CBUS_ZDBUSYO output.

1. If CBUS_ZVALTYPEI indicates Instruction Cache or EJTAG data is present on
CBUS_ZDATAI, the data is always accepted by the LX4580.

2. If CBUS_ZVALTYPEI indicates that Data Cache data is present on CBUS_ZDATAI and
CBUS_ZDBUSYO is asserted, the external logic must continue to drive CBUS_ZVALTYPEI
and CBUS_ZDATAI until CBUS_ZDBUSYO deasserts.

5.8. CBUS_Z Transaction Timing Diagrams

Note: All of the following timing diagrams assume a line size of 32 bytes. For reads, the transaction request is
shown in a different timing diagram than the returning read data as there is no protocol link between the two.

5.8.1. Back-to-Back Sub-Line Writes with Busy

In cycle 1 the write to address A is accepted by the external logic. In cycle 2 the external logic asserts
CBUS_ZBUSYI which causes the LX4580 to hold its request. In cycle 3, the external logic de-asserts
CBUS_ZBUSYI and accepts the request.

In this example, cycle 4 could be used by the processor to initiate another request.

Figure 5: CBUS_Z Back-to-Back Sub-Line Writes with Busy

CLK

CBUS_ZREQO

CBUS_ZBUSYI

CBUS_ZADDRO[35:0]

CBUS_ZDATAO[63:0]

CBUS_ZSRCO[1:0]

CBUS_ZLINEO

CBUS_ZSZO[1:0]

CBUS_ZREADO

CBUS_ZLTIDO[1:0]

CBUS_ZUCO

A B

A B

A B

A B

D0149

1 2 3 4

Chapter 5. CBUS_Z Interface (ZBI)

34 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

5.8.2. Line Writes

During a line write the address is given in cycle 1. External logic signals that it is able to accept a line write
request by de-asserting CBUS_ZBUSYI. External logic does not honor a line write request when
CBUS_ZBUSYI is asserted.

Figure 6: CBUS_Z Line Write

5.8.3. Read Request

A line read request takes only one cycle with the data being returned later by the external logic.

Figure 7: CBUS_Z Read Requests

CLK

CBUS_ZREQO

CBUS_ZBUSYI

CBUS_ZADDRO[35:0]

CBUS_ZDATAO[63:0]

CBUS_ZSRCO[1:0]

CBUS_ZLINEO

CBUS_ZSZO[1:0]

CBUS_ZREADO

CBUS_ZLTIDO[1:0]

CBUS_ZUCO

A

A1 A2 A3 A4

A

D0150

1 2 3 4 5

CLK

CBUS_ZREQO

CBUS_ZBUSYI

CBUS_ZADDRO[35:0]

CBUS_ZDATAO[63:0]

CBUS_ZSRCO[1:0]

CBUS_ZLINEO

CBUS_ZSZO[1:0]

CBUS_ZREADO

CBUS_ZLTIDO[1:0]

CBUS_ZUCO

A B

A B

A

A B

D0151

1 2

5.8.4. Returning Read Data

LX4580 Lexra Inc. Proprietary & Confidential 35

Rev 3.1 October 11, 2002 DO NOT COPY

5.8.4. Returning Read Data

External logic supplies read data on the CBUS_ZDATAI and CBUS_ZLTIDI inputs while asserting a bit
within CBUS_ZVALTYPEI. If CBUS_ZVALTYPEI indicates Data (2’b01), the LX4580 only accepts the
read data if it has de-asserted CBUS_ZDBUSYO. If CBUS_ZDBUSYO is asserted with
CBUS_ZVALTYPEI = 2’b01, the external logic must maintain CBUS_ZVALTYPEI and CBUS_ZDATAI
until CBUS_ZDBUSYO is deasserted

Figure 8: CBUS_Z Sub-Line Read Data and DBUSY

A read line data return is illustrated below. The external device asserts the appropriate bit of
CBUS_ZVALTYPEI for each data beat. Assertion of CBUS_ZDBUSYO is also illustrated.

Figure 9: Read Data for a Line Read Request

CLK

CBUS_ZDBUSYO

CBUS_ZRDYI

CBUS_ZVALTYPEI[1:0]

CBUS_ZDATAI[63:0]

CBUS_ZLTIDI[1:0]

A (00) B (10) C (01)

A B C

A B C

D0152

1 2 3 4 5 6

CLK

CBUS_ZDBUSYO

CBUS_ZRDYI

CBUS_ZVALTYPEI[1:0]

CBUS_ZDATAI[63:0]

CBUS_ZLTIDI[1:0]

A (01)

A0 A1 A2 A3

A

D0153

1 2 3 4 5 6

Chapter 5. CBUS_Z Interface (ZBI)

36 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

LX4580 Lexra Inc. Proprietary & Confidential 37

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 6. EC Interface (ECI)

6.1. Overview

The EC Interface (ECI) is used in the LX4580 as the interface between the CPU and memory and IO devices.

The chapter describes the LX4580’s EC Interface (ECI) option, which is one of two interfaces options
supported by the LX4580. The ECI translates the CPU’s internal busses into a unified 64-bit interface that

may connect directly to the user’s system. The EC protocol is described in the MIPS “ECtm Interface
Specification”, Revision 1.05. The LX4580 supports Lexra’s CBUS_Z Interface (ZBI) as an alternative to the
EC interface. See Chapter 5.

The LX4580 EC interface provides a 64-bit data path and operates at 1x or 1/2x the CPU core clock rate. If
the LX4580 is configured for 64 or 128-byte cache lines, multiple 32-byte EC interface bursts are required to
transfer one cache line.

Figure 10: EC Interface (ECI)

EB_BLast

EB_WData

EB_ARdy

LX4580
CPU

EB_EWBE

EB_WDRdy

EB_AValid

EB_A

EB_Write

33

64

EB_Instr

EB_BE
8

EB_BFirst

64

EB_BLen2

EB_Burst

EB_WWBE

EB_RdVal

EB_RData

EB_RBErr

EB_RBErr

Chapter 6. EC Interface (ECI)

38 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

6.2. EC Interface Signals

6.3. EC Interface Endian Mode

The LX4580 is bi-endian. A static input pin, CFG_BIGENDIAN, determines the endian mode of the
processor and the EC interface. The memory contents below apply to the examples presented in this section.

Table 13: EC Interface Signals

Signal Name Direction Description

Command

EB_ARdy input Slave can accept new request (address phase)

EB_AValid output Request valid

EB_A[35:3] output Address bus

EB_Write output Current address phase is for a write request (else read)

EB_Instr output Current address phase is for an instruction fetch (else data or EJTAG)

Burst Control

EB_BE[7:0] output Byte enable

EB_BFirst output First address phase of burst

EB_BLast output Last address phase of burst

EB_BLen[1:0] output Burst length (beats)

EB_Burst output Current address phase is part of burst

Write Buffer Synchronization

EB_WWBE output Master is waiting for external write buffer to empty (SYNC instruction executed)

EB_EWBE input External write buffer is empty

Write Data

EB_WDRdy input Slave is ready to accept write data

EB_WBErr input Bus error on write

EB_WData[63:0] output Write data bus

Read Data

EB_RdVal input Read data is valid

EB_RBErr input Bus error on read

EB_RData[63:0] input Read data bus

byte address hex contents

0 88

1 99

2 AA

3 BB

4 CC

5 DD

6 EE

7 FF

6.3. EC Interface Endian Mode

LX4580 Lexra Inc. Proprietary & Confidential 39

Rev 3.1 October 11, 2002 DO NOT COPY

The program visible behavior of all cacheable and uncacheable loads conform to the formats presented in
Table 14. The EC byte enable flags (EC_BE[7:0]) can be inferred from EC data patterns.

Note that the EC interface signals do not intrinsically employ the concept of endian mode. The LX4580 uses
the internally generated address bits 2:0 to make the determination of what EC byte enable signals to assert.
The three low-order address bits are omitted from the EC interface address lines. There is no way to
determine the endian mode employed for a transfer over the EC interface.

Table 14: Effect of Endian Mode on EC Interface

Inst and
addr[2:0]

Big Endian Little Endian

EC Dataa

a. A dash in this column indicates the data is undefined.

Regb

b. A dash in this column indicates the register contents are not affected (loads) or are

ignored (stores).

EC Dataa Regb

SB/LB 0 88------ -------- 00000088 -------- ------88 00000088

1 --99---- -------- 00000099 -------- ----99-- 00000099

2 ----AA-- -------- 000000AA -------- --AA---- 000000AA

3 ------BB -------- 000000BB -------- BB------ 000000BB

4 -------- CC------ 000000CC ------CC -------- 000000CC

5 -------- --DD---- 000000DD ----DD-- -------- 000000DD

6 -------- ----EE-- 000000EE --EE---- -------- 000000EE

7 -------- ------FF 000000FF FF------ -------- 000000FF

SH/LH 0 8899---- -------- 00008899 -------- ----9988 00009988

2 ----AABB -------- 0000AABB -------- BBAA---- 0000BBAA

4 -------- CCDD---- 0000CCDD ----DDCC -------- 0000DDCC

6 -------- ----EEFF 0000EEFF FFEE---- -------- 0000FFEE

SW/LW 0 8899AABB -------- 8899AABB -------- BBAA9988 BBAA9988

4 -------- CCDDEEFF CCDDEEFF FFEEDDCC -------- FFEEDDCC

double wordc

c. Double word transfers only occur as part of a line read or write.

8899AABB CCDDEEFF n/a FFEEDDCC BBAA9988 n/a

LWL/SWL 0 8899AABB -------- 8899AABB -------- ------88 88------

1 --99AABB -------- 99AABB-- -------- ----9988 9988----

2 ----AABB -------- AABB---- -------- --AA9988 AA9988--

3 ------BB -------- BB------ -------- BBAA9988 BBAA9988

4 -------- CCDDEEFF CCDDEEFF ------CC -------- CC------

5 -------- --DDEEFF DDEEFF-- ----DDCC -------- DDCC----

6 -------- ----EEFF EEFF---- --EEDDCC -------- EEDDCC--

7 -------- ------FF FF------ FFEEDDCC -------- FFEEDDCC

LWR/SWR 0 88------ -------- ------88 -------- BBAA9988 BBAA9988

1 8899---- -------- ----8899 -------- BBAA99-- --BBAA99

2 8899AA-- -------- --8899AA -------- BBAA---- ----BBAA

3 8899AABB -------- 8899AABB -------- BB------ ------BB

4 -------- CC------ ------CC FFEEDDCC -------- FFEEDDCC

5 -------- CCDD---- ----CCDD FFEEDD-- -------- --FFEEDD

6 -------- CCDDEE-- --CCDDEE FFEE---- -------- ----FFEE

7 -------- CCDDEEFF CCDDEEFF FF------ -------- ------FF

Chapter 6. EC Interface (ECI)

40 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

For the purpose of the unaligned load and store instructions (LWL and LWR) the address bits shown in
CBUS columns of Table 14 are adjusted values, not the raw address computed by the instruction. For LWL in
little endian mode and LWR in bit endian mode, the two low order address bits are forced to zero. For all
other cases the address bits are unchanged.

6.4. EC Interface Pending Requests

The EC Interface Specification allows for an unlimited number of outstanding requests. In the ECI, the
number of outstanding requests are limited by the amount of internal buffering available. The following rules
apply:

• For reads, up to 2.5 lines of data buffering is provided. Read requests can be issued until
the amount of pending data is equal to the available data buffering.

• For sub-line writes, one word of buffering is provided. Write requests can be issued until
the amount of pending data is equal to the available data buffering.

• For line writes, no buffering is provided. No other requests of any type can be issued until
the last beat of write data is accepted by the slave.

• The 4580 CPU has an architectural limitation on the number of reads that may be pending,
independent of ECI buffering. Those limits are:

• One ICACHE read per thread
• One DCACHE read per thread
• ONE EJTAG read

• When the 4580 executes a SYNC instruction, no other requests of any type can be issued
until all pending writes complete, and the slave asserts EB_WEBE.

6.5. EC Interface Gasket Overview

LX4580 Lexra Inc. Proprietary & Confidential 41

Rev 3.1 October 11, 2002 DO NOT COPY

THE REMAINDER OF THIS CHAPTER IS FOR INTERNAL LEXRA USE.

6.5. EC Interface Gasket Overview

The EC Interface Gasket (ECI) is used in the LX4580 as the interface between the CPU and memory and IO
devices. The CPU connection is provided by the LX4580’s CBUS and IBUS interfaces. These interfaces are
described in the remaining sections of this chapter. The ECI interface accepts read data destined for the
CBUS reply interface, and provides write data from the CBUS request interface or IBUS reply interface.

6.6. Supported Configurations

1 Two burst sequences are required to transfer a cache line on the EC interface.

Figure 11: EC Interface Gasket (ECI)

Table 15: Supported Configurations

EC Bus
Width
(bits)

Cache Line
Size (bytes)

Beats
per

Burst

ECI/Core
Speed
Ratio

Theoretical BW
(Gb/s, assumes
500 Mhz core)

Compatibility

64 64 41 1 32 5KC, 5KF, EC-64

64 64 41 1/2 16 5KC, 5KF, EC-64

EB_WData
64

EB_RData

IBUS_REQI

CBUS_YREQO EB_AValid

Inquiry
Control

IBUS_DBUSYO

CBUS_YBUSYI EB_ARdy

IBUS_RDYO

IBUS_XBUSYI

IBUS_HDRDATAO

CBUS_YDATAO

CBUS_YDATAI

CBUS_YRDYI

DC_CBDBUSY

32

64

64

EB_RDVal

EB_RWDRdy

128

Chapter 6. EC Interface (ECI)

42 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

6.7. Implementation Guidance for Endian Mode

From a logic design and verification perspective, there are trade-offs over how far the endian mode should
reach into the processor. While for the purposes of verification and the simulation environment it may be
preferable for the entire processor to reflect the configured endian mode, this is by no means necessary in
terms of architecture.

Table 20 in Section 6.3 provides the complete architectural definition of endian modes in the processor. The
material in the section provides background and implementation information.

6.7.1. Consistency of Endian Mode in the System

The motivation of providing a bi-endian CPU is to permit a consistent system view of the endian mode. That
is, software, the CPU and system bus devices all should implement the same endian mode. If this is not the
case, the issues that arise are more a matter of software and system level design that of CPU architecture.

It makes little or no sense for software to operate with an endian mode that differs from the CPU. Caches
operate in a specific way in response to the endian mode. It is more practical and straightforward for
applications and the operating system to be consistent with the CPU’s endian mode. (Or, vice-versa.)

In some cases, software might perform manual conversions of data structures between endian modes when
accessing specific devices or data structures that have a different endian mode than the CPU. The best way to
treat this is explicitly as needed.

Lastly, while it is possible to build systems in which the endian mode of a CPU and system devices differ, it is
presumed that the bi-endian LX4580 will be configured to match the mode of the system devices.

For the above reasons, there is no mixed-endian support required in the LX4580.

6.7.2. Address Invariance

For any address visible to software or external hardware, the CPU’s implementation of the endian modes
must obey the principle of address invariance. This means that for a reference of a given size and address the
same address is employed in software and all user visible hardware, regardless of endian mode.

If the CPU responds to the endian mode throughout its entire implementation, address invariance will be
satisfied without any additional effort.

In contrast, if the CPU maintains big endian mode internally and an endian switch is implemented at some
internal interface (for example within the ECI), then the conversion must take care to ensure address
invariance.

6.7.3. Data Invariance

Data invariance is analogous to address invariance. That is, for a reference of a given size, address, and
endian mode, data is driven on different busses using a consistent alignment.

In a pure architectural sense, the only data alignment that matters is the data which is driven through the
system bus interface. This specification is neutral on the extent to which data invariance should be supported
on the processor’s internal data paths. As suggested in the previous section, it is reasonable to break data
invariance on internal data paths as a means of preserving address invariance in an endian switch.

Supporting data invariance throughout the entire CPU design is a double edged sword. On the one hand,
there is some benefit to a consistent treatment of endian mode in any interface that could potentially be
exposed to a customer (e.g. CBUS, RAMs for DMA). On the other hand, a substantial set of tools have been

6.7.4. Reverse Endian Support Not Recommend

LX4580 Lexra Inc. Proprietary & Confidential 43

Rev 3.1 October 11, 2002 DO NOT COPY

developed to support Lexra’s simulation environment which access internal state, and these assume big
endian formats. While in the long run, these tools might benefit from a consistent treatment of endian mode
for the entire environment, they would first have to be changed to support bi-endian operation.

In terms of CPU implementation, the easiest way to provide universal data invariance is to implement the
endian switch throughout the entire CPU (data cache, CBUS and outward). This actually entails very little
hardware, being limited to logic that decodes low order address bits to control data selection muxes. The
muxes themselves already exist to reconcile different access sizes in the current big endian implementation.
Changing the endian mode does not add any data inputs to these muxes.

6.7.4. Reverse Endian Support Not Recommend

The MIPS32 architecture permits an optional reverse endian mode, controlled with the CP0 Status register
RE bit. When set, this bit reverses the endian mode of user mode references only. Since this only affects user
mode, it is not an effective means for managing endian difference between a CPU and system devices.

Allowing endian mode to vary instruction by instruction in response to this flag is burdensome and not worth
the effort. Therefore, it is not recommended that the LX4580 support reverse endian operation.

6.7.5. Endian Mode and Unaligned Load/Store

As seen in Table 14 in Section 6.3, the processor must zero the two low order address bits of the calculated
addresses of unaligned loads and stores, so that the address presented to the system is word-aligned. This
truncation depends on the endian mode. Table 14 provides a concise specification of what the individual
instructions must do, but it somewhat obscures the real working of the unaligned load and store instructions.

The tables below illustrate unaligned loads and stores from a different perspective. They show an object in
memory consisting of bytes represented by the symbols A, B, C, D starting at the (aligned) location 0, and the
(unaligned) locations 1, 2 and 3. The left and right flavors of the unaligned load and store instructions are
paired in the manner that they would normally be executed. For example, for a big endian LWL with the two
calculated low order address bits equal to 0, the corresponding LWR calculates an address with the low order
bits equal to 3. From these tables it is clear how these instructions respond the endian mode to access the left
and right portions of an unaligned word in memory, and how the portions are merged in the CPU register.

Table 16: Big Endian Unaligned Load/Store Address Adjustments

Memory Contents
0 1 2 3 4 5 6 7

LWL/SWL LWR/SWR

Calculated
Addr[3:0]

Register
Contents

Calculated
Addr[3:0]

Adjusted
Addr[3:0]

Register
Contents

A B C D - - - - 0 A B C D 3 0 A B C D

- A B C D - - - 1 A B C - 4 4 - - - D

- - - A B C D - 2 A B - - 5 4 - - C D

- - - - A B C D 3 A - - - 6 4 - B C D

Chapter 6. EC Interface (ECI)

44 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

6.8. CBUS_Y Interface

The CBUS_Y interface is not available for application use. As an alternative to ECI, a simpler version of the
CBUS_Y protocol is available with the CBUS_Z interface option. See XREF.

The CBUS_Y provides signalling between the CPU, EJTAG, ICACHE, DCACHE and ECI. Certain requests
may require an eviction (RLE, RLME, WLI, and WLE). These evictions are caused by sending an inquiry
request on the IBUS interface.

CBUS_Y requests may be single byte, half word, tri-byte, word, or line length. All line requests are zero
word first. The CBUS_Y interface runs at the CPU core clock rate. CBUS_Y requests may be throttled if the
EC interface is busy. CBUS_Y requests are also throttled while an inquiry is pending on the IBUS interface.

Read reply data from the EC interface is returned over the CBUS_Y reply interface. Up to five CBUS_Y
read requests may be pending (one per thread). A transfer on the CBUS_Y reply interface must not be
interrupted. Buffering is provided for two lines of reply data to meet this requirement. Transfers on the
CBUS_Y reply interface destined for DCACHE may be thottled if the DCACHE is busy.

Table 17: Little Endian Unaligned Load/Store Address Adjustments

Memory Contents
0 1 2 3 4 5 6 7

LWL/SWL LWR/SWR

Calculated
Addr[3:0]

Adjusted
Addr[3:0]

Register
Contents

Calculated
Addr[3:0]

Register
Contents

- - - - A B C D 3 0 A B C D 0 A B C D

- - - A B C D - 4 4 A - - - 1 - B C D

- - A B C D - - 5 4 A B - - 2 - - C D

- A B C D - - - 6 4 A B C - 3 - - - D

Table 18: CBUS_Y Request Interface

Signal Name Direction Description

CBUS_YREQO input CBus Request

CBUS_YADDRO[35:0] input Physical Address for Request

CBUS_YDATAO[31:0] input Data for Request

CBUS_YCMDO[3:0] input CBus Request Command

CBUS_YSZO[1:0] input Size of Data for Request

CBUS_YSRCO[1:0] input Source of Request

CBUS_YDWAYO[1:0] input data cache way L1 duplicate tag update (unused)

CBUS_YLTIDO[1:0] input Thread ID of Request

CBUS_YBUSYI output EC Interface Busy

6.8.1. CBUS_Y Endian Mode

LX4580 Lexra Inc. Proprietary & Confidential 45

Rev 3.1 October 11, 2002 DO NOT COPY

6.8.1. CBUS_Y Endian Mode

Table 20 presents the impact of endian mode on the CBUS_Y. Although the CBUS_Y command is not
shown in the table and can be inferred from the size of the valid data in the CBUS_Y data patterns. The effect
of endian mode on the EC interface is also shown for convenience.

Table 19: CBUS Reply Interface

Signal Name Direction Description

CBUS_YRDYI output Reply Data ready

CBUS_YDESTI[2:0] output Destination for Reply Data

CBUS_YLSTEI[2:0] output Line State and Transaction Reply Type

CBUS_YRDLTIDI[1:0] output Thread ID for Reply

CBUS_YDATAI[127:0] output Reply Data

DC_CBDBUSY input Data cache Busy

Table 20: Effect of Endian Mode on CBUS_Y

Inst and
addr[2:0]

Big Endian Little Endian

CBUS Addr/Dataa EC Dataa Regb CBUS Addr/Dataa EC Dataa Regb

SB/LB 0 0 / 88------ -------- 88------ -------- 00000088 0 / -------- ------88 -------- ------88 00000088

1 1 / --99---- -------- --99---- -------- 00000099 1 / -------- ----99-- -------- ----99-- 00000099

2 2 / ----AA-- -------- ----AA-- -------- 000000AA 2 / -------- --AA---- -------- --AA---- 000000AA

3 3 / ------BB -------- ------BB -------- 000000BB 3 / -------- BB------ -------- BB------ 000000BB

4 4 / -------- CC------ -------- CC------ 000000CC 4 / ------CC -------- ------CC -------- 000000CC

5 5 / -------- --DD---- -------- --DD---- 000000DD 5 / ----DD-- -------- ----DD-- -------- 000000DD

6 6 / -------- ----EE-- -------- ----EE-- 000000EE 6 / --EE---- -------- --EE---- -------- 000000EE

7 7 / -------- ------FF -------- ------FF 000000FF 7 / FF------ -------- FF------ -------- 000000FF

SH/LH 0 0 / 8899---- -------- 8899---- -------- 00008899 0 / -------- ----9988 -------- ----9988 00009988

2 2 / ----AABB -------- ----AABB -------- 0000AABB 2 / -------- BBAA---- -------- BBAA---- 0000BBAA

4 4 / -------- CCDD---- -------- CCDD---- 0000CCDD 4 / ----DDCC -------- ----DDCC -------- 0000DDCC

6 6 / -------- ----EEFF -------- ----EEFF 0000EEFF 6 / FFEE---- -------- FFEE---- -------- 0000FFEE

SW/LW 0 0 / 8899AABB -------- 8899AABB -------- 8899AABB 0 / -------- BBAA9988 -------- BBAA9988 BBAA9988

4 4 / -------- CCDDEEFF -------- CCDDEEFF CCDDEEFF 4 / FFEEDDCC -------- FFEEDDCC -------- FFEEDDCC

double wordc 0 / 8899AABB CCDDEEFF 8899AABB CCDDEEFF n/a 0 / FFEEDDCC BBAA9988 FFEEDDCC BBAA9988 n/a

LWL/SWL 0 0 / 8899AABB -------- 8899AABB -------- 8899AABB 0 / -------- ------88 -------- ------88 88------

1 1 / --99AABB -------- --99AABB -------- 99AABB-- 0 / -------- ----9988 -------- ----9988 9988----

2 2 / ----AABB -------- ----AABB -------- AABB---- 0 / -------- --AA9988 -------- --AA9988 AA9988--

3 3 / ------BB -------- ------BB -------- BB------ 0 / -------- BBAA9988 -------- BBAA9988 BBAA9988

4 4 / -------- CCDDEEFF -------- CCDDEEFF CCDDEEFF 4 / ------CC -------- ------CC -------- CC------

5 5 / -------- --DDEEFF -------- --DDEEFF DDEEFF-- 4 / ----DDCC -------- ----DDCC -------- DDCC----

6 6 / -------- ----EEFF -------- ----EEFF EEFF---- 4 / --EEDDCC -------- --EEDDCC -------- EEDDCC--

7 7 / -------- ------FF -------- ------FF FF------ 4 / FFEEDDCC -------- FFEEDDCC -------- FFEEDDCC

Chapter 6. EC Interface (ECI)

46 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

6.8.2. CBUS_Y Command Encoding

LWR/SWR 0 0 / 88------ -------- 88------ -------- ------88 0 / -------- BBAA9988 -------- BBAA9988 BBAA9988

1 0 / 8899---- -------- 8899---- -------- ----8899 1 / -------- BBAA99-- -------- BBAA99-- --BBAA99

2 0 / 8899AA-- -------- 8899AA-- -------- --8899AA 2 / -------- BBAA---- -------- BBAA---- ----BBAA

3 0 / 8899AABB -------- 8899AABB -------- 8899AABB 3 / -------- BB------ -------- BB------ ------BB

4 4 / -------- CC------ -------- CC------ ------CC 4 / FFEEDDCC -------- FFEEDDCC -------- FFEEDDCC

5 4 / -------- CCDD---- -------- CCDD---- ----CCDD 5 / FFEEDD-- -------- FFEEDD-- -------- --FFEEDD

6 4 / -------- CCDDEE-- -------- CCDDEE-- --CCDDEE 6 / FFEE---- -------- FFEE---- -------- ----FFEE

7 4 / -------- CCDDEEFF -------- CCDDEEFF CCDDEEFF 7 / FF------ -------- FF------ -------- ------FF

a. A dash in this column indicates the data is undefined.
b. A dash in this column indicates the register contents are not affected (loads) or are ignored (stores).
c. Double word transfers only occur as part of a line read or write.

Table 21: CBUS_Y Commands

Crossbar Request Message CBUS_YCMDO[3:0] CBUS_YSZO[1:0]

RL 1001 N/A

RLM 1101 N/A

RLE 1011 N/A

RLME 1111 N/A

RB 1000 00

RH 1000 01

RT 1000 10

RW 1000 11

UM 0101 N/A

WLI 0011 N/A

WLS 0111 N/A

LI 0001 N/A

WB 0000 00

WH 0000 01

WT 0000 10

WW 0000 11

SYNC 0010 N/A

Table 20: Effect of Endian Mode on CBUS_Y (Continued)

Inst and
addr[2:0]

Big Endian Little Endian

CBUS Addr/Dataa EC Dataa Regb CBUS Addr/Dataa EC Dataa Regb

6.8.3. RLE & RLME Eviction Address

LX4580 Lexra Inc. Proprietary & Confidential 47

Rev 3.1 October 11, 2002 DO NOT COPY

Table 22: CBUS_Y Source Encoding

6.8.3. RLE & RLME Eviction Address

The Eviction address for the RLE and RLME requests is transferred through the CBUS_YDATAO line to the
CBUS_Y Request Interface. Since physical addresses are 36-bits and the CBUS_YDATAO bus is 32-bits
wide, the entire address cannot be transferred. However, the eviction address is line-aligned, so only 30 bits
are required. The format of the address is as follows:

CBUS_YSRCO[1:0] Request Source

00 ICACHE

01 DCACHE

10 EJTAG

11 Reserved

Table 23: CBUS_Y Destination Encoding

CBUS_YDESTI[2:0] Description

000 Idle Cycle (no valid data)

100 EJTAG Reply

010 data cache Reply

001 instruction cache Reply

Table 24: CBUS_Y Reply Encoding

CBUS_YLSTEI[2:0] Description

000 DS

001 DLS (unused)

010 DLE

011 DLM

100 WSA

101 Reserved

110 Reserved

111 UMA (unused)

31-30 29-6 5-0

 (0) Address Tag (A35:12) Address Index (A11:6)

Chapter 6. EC Interface (ECI)

48 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

6.9. IBUS Interface

In the ECI application, the IBUS is used to purge the DCACHE eviction buffers. An eviction is caused by
sending an IRE inquiry via the IBUS inquiry interface. The DCACHE presents the evicted line on the IBUS
reply interface. The IBUS interface runs at the CPU core clock rate.

6.9.1. IBUS Header Encoding

The header of an IBUS reply transfer is identical to the crossbar header format. The only IBUS reply
supported is IRA.

Table 25: IBUS Request Interface

Signal Name Direction Description

IBUS_REQI output Inquiry Request

IBUS_CMDI[1:0] output Inquiry Request Command

IBUS_CHEI[1:0] output Coherency Engine of Inquiry Request (always 2’b00)

IBUS_TIDI[3:0] output TID Field of Inquiry Request

IBUS_ADDRI[35:0] output Address of Inquiry Request

IBUS_DBUSYO input data cache Busy

Table 26: IBUS Reply Interface

Signal Name Direction Description

IBUS_RDYO input Inquiry Reply Ready

IBUS_STARTO input Inquiry Reply Header Data Valid

IBUS_HDRDATAO[63:0] input Inquiry Reply Header & Data Bus

IBUS_XBUSYI output EC Interface Busy

Table 27: IBUS Commands

Crossbar Request Message IBUS_CMDI[1:0] Description

II 00 Line Invalidation (unused)

IIE 01 Evict Line and Invalidate (unused)

IDE 10 Downgrade Line State (unused)

IRE 11 Replacement Eviction

6.10. ECI Actions on CBUS_Y Commands

LX4580 Lexra Inc. Proprietary & Confidential 49

Rev 3.1 October 11, 2002 DO NOT COPY

6.10. ECI Actions on CBUS_Y Commands

Notes:

1 On sub-line CBUS_Y requests the DCACHE is not checked or updated.
2 Further CBUS_Y requests are throttled during an IBUS Request/Reply sequence.
3 For SYNC, the ECI holds all subsequent CBUS_Y requests until all previous writes have completed. It is not necessary to wait for

outstanding reads to complete because a context with an outstanding read is not active, and therefore cannot execute a SYNC
instruction.

Table 28: ECI Actions on CBUS_Y Requests

CBUS_Y Request
CBUS_YCMDO

EC Interface
Commands IBUS Request 2

CBUS_Y Reply
CBUS_YLSTEI

RL !EB_Write
EB_Burst
EB_Instr (possible)

none DLE

RLM !EB_Write
EB_Burst

none DLM

RLE !EB_Write
EB_Burst

IRE DLE

RLME !EB_Write
EB_Burst

IRE DLM

RS 1 !EB_Write
!EB_Burst

none DS

UM UM none UMA

WLI none IRE none

WLE none IRE none

LI none none none

WS 1 EB_Write
!EB_Burst

none WSA

SYNC 3 none none none

Table 29: ECI Actions on IBUS Replies

IBUS Reply
CBUS_YCMDO

EC Interface
Commands

IA, IEA can not occur

IRA EB_Write
EB_Burst

Chapter 6. EC Interface (ECI)

50 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

LX4580 Lexra Inc. Proprietary & Confidential 51

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 7. Interrupts

7.1. Interrupt Overview

The LX4580 provides two classes of cross-context interrupts. Each context includes eight flags to indicate
pending cross interrupts. (Two classes from each of the four possible source contexts). The pending cross
interrupts are signalled through the IP[2] bit of the destination context’s CP0 Status register.

The LX4580 has four active high level sensitive hardware interrupt inputs, HW_INT[4:1]. These interrupts
are synchronized within the processor and connected to the IP[6:3] of each context’s CP0 Status register.

The LX4580 also has a rising edge sensitive non maskable interrupt input, NMI. This interrupt is
synchronized within the processor and converted to a pulse which causes an NMI exception within the CPU.

Software may send an interrupt to any context on the CPU by executing an uncached store word instruction
that specifies the address of the Cross Context Interrupt Request (CCI_IntReq) register. The contents of the

Figure 12: LX4580 Interrupt Logic

IntPend
Set/Clear

Logic

CCI_IntPend
(one per context)

8 1

8

88

8

3 3

CCI_IntReq

Initiator writes
to signal
interrupt.

Target writes to
clear pending
interrupts.

Target writes to
enable or dis-
able interrupts.

Target reads to
observe pend-
ing interrupts.

Target reads to
observe inter-
rupt masks.

Connected to
each context’s
Cause:IP[2]

CCI_IntMask
(one per context)

Cross-Context Interrupts:

External Hardware Interrupts:

HW_INT[4:1]
4 Connected to

each context’s
Cause:IP[6:3]

Non Maskable Interrupt:

synchronize

NMI Connected to
CPU’s NMI
input.

pulse
generation

4

0
1
2
30

1
2
3

2

0
1
2
3

Although there are
eight pending cross-
interrupt signals, the
example waveforms
show only four.

Chapter 7. Interrupts

52 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

word being stored identify the destination context and interrupt class. (The meaning of the two interrupt
classes is software defined.) The hardware’s interrupt set/clear logic selects the CCI_IntPend register that
corresponds to the destination context, and sets the IntPend bit within that register that corresponds to the
source context and interrupt class.

The mask bits from each context’s CCI_IntMask register are ANDed with cross interrupt pending flags in
each context’s CCI_IntPend register. The results are reduction ORed and determine the state of the IP[2] bit
in the CP0 Status register for each context.

When a cross interrupt event is captured in a CCI_IntPend register, the hardware acknowledges the CPU’s
write to the CCI_IntReq register. Software that initiates a cross interrupt can use the SYNC instruction to
verify that the interrupt is pending at the target (i.e. observable by the target through a read of the target’s
CCI_IntPend register).

7.1.1. Cross Context Interrupt Request Register (CCI_Req)

Name: Cross-Context Interrupt Register (CCI_Req)
Size: 32 bits.
Address: IRR_Base + 0.

31:17 16 15:2 1:0

0 Class 0 Tid

Field Bits Description R/W Reset

0 31:17 Reserved and must be 0 - 0

Class 16 0 - Set an IntPend0 bit the target context, corre-
sponding to the context ID that is performing the
write to CCI_Req.

 1 - Set an IntPend1 bit the target context, corre-
sponding to the context ID that is performing the
write to CCI_Req.

W 0

0 15:2 Reserved and must be 0 - 0

Tid 1:0 ID of cross-interrupt target context. W 0

7.1.2. CCI_IntPend Register (One per context)

LX4580 Lexra Inc. Proprietary & Confidential 53

Rev 3.1 October 11, 2002 DO NOT COPY

7.1.2. CCI_IntPend Register (One per context)

Name: CCI_IntPend.
Size: 32 bits.
Address: AS_Base + 0x0100

7.1.3. CCI_IntMask Register (One per context)

Name: CCI_IntMask.
Size: 32 bits.
Address: AS_Base + 0x0104
SW Init: None.
Restrictions: None.

31:20 19:16 15:4 3:0

0 IntPend1 0 IntPend0

Field Bits Description R/W Reset

0 31:20 Reserved and must be 0 R 0

IntPend1 19:16 Bit vector identifying source contexts of class 1 interrupts.
 0 - interrupt is not pending.
 1 - interrupt is pending.

R/W1Ca

a. W1C = Write 1 to Clear.

0

0 15:4 Reserved and must be 0 R 0

IntPend0 3:0 Bit vector identifying source contexts of class 0 interrupts.
 0 - interrupt is not pending.
 1 - interrupt is pending.

R/W1C 0

One copy of the CCI_IntPend register exists for each context. This register may be read and written
only by its associated context. Interrupts for each target context are generated as follows:

INTREQ2_N[target] = | (IntPend & IntMask)

The source context of the interrupt sets IntPend bits by writing to the IRR_CCI register. IntPend bits
are cleared by the destination context by writing 1 to the appropriate bit in the IntPend register.

31:20 19:16 15:3 3:0

0 IntMask1 0 IntMask0

Field Bits Description R/W Reset

0 31:20 Reserved and must be 0 R 0

IntMask1 19:16 Mask the IntPend1 bits of the CCI_IndPend register.
 0 - pending interrupt does not cause exception.
 1 - pending interrupt may cause exception.

R/W 0

0 15:4 Reserved and must be 0 R 0

IntMask0 3:0 Masks the IntPend0 bits of the CCI_IndPend register.
 0 - pending interrupt does not cause exception.
 1 - pending interrupt may cause exception.

R/W 0

One copy of this register exists for each context, which may be read and written only by its associated
context. The IM2 bit in context’s CP0 Status must be set for a cross interrupt to cause an exception.

Chapter 7. Interrupts

54 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

LX4580 Lexra Inc. Proprietary & Confidential 55

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 8. EJTAG (EJ)

The LX4580 has a fully-featured debug capability which allows full visibility to all LX4580 CPU functions.
This capability is based on the MIPS EJTAG Debug Solution 2.0.0 with extra features added to support
HMT.

Standard features include:

• Full control of all LX4580 CPUs via the 5 JTAG pins (TCK, TMS, TDI, TDO, RST_N)

• Instruction and Data Breakpoints (number is TBD).

• Hardware single-stepping of any context.

• SDBBP (software debug breakpoint) and DERET (debug exception return) instructions.

• DMA access directly to memory avoiding TLB or cache.

• Instruction jamming to the LX4580 CPU through the EJTAG memory-mapped region.

Features added to support HMT include:

• Choice of which context takes a debug exception when requested by EJTAG.

• Option to disable other contexts when one context takes a debug exception.

• Instruction and data breakpoints match against a particular context, or all contexts.

• Internal PC trace buffers with compression.

• Internal simultaneous PC trace buffering of all contexts.

• Global interrupt of all LX4580 CPUs when a debug exception occurs in one CPU context.

• Optional connection to EJTAG via RS232 UARTE port on LX4580.

LX4580 supplies one set of JTAG pins, through which the TAP controllers for each LX4580 CPU can be
daisy-chained together. The TCK and TMS signals are broadcast (so each TAP is always in the same state)
and the TDI and TDO are daisy-chained - TDO from CPU0 goes to TDI of CPU1, TDO of CPU1 goes to
TDI of CPU2 etc.

Figure 13: LX4580 ETJAG Organization

LX4580

EJTAG

trace
buffer

LX4580
CPU 0

tap

EJTAG

trace
buffer

LX4580
CPU 1

tap

EJTAG

trace
buffer

LX4580
CPU 2

tap

EJTAG

trace
buffer

LX4580
CPU 3

tap
TDITDOTDITDOTDITDOTDI

TDI

TMS
TCK

TDO

TDO

Chapter 8. EJTAG (EJ)

56 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

THE REMAINDER OF THIS CHAPTER IS FOR INTERNAL LEXRA USE.

8.1. EJTAG Differences from 2.0.0.

The following tables describe implementation options/differences between Lexra’s EJTAG solution and the
MIPS EJTAG Debug Solution 2.0.0 specification. The O/D column indicates an option or a difference.

8.1.1. EJTAG TAP Registers

Table 30: EJTAG TAP Registers

NAME OP Field O/D Implementation Specific Information Reset

Implementation
Read-only Reg-
ister

0x3 0 O 1’b0 Indicates M32 0

4:1 O 4’b0000 - Obsolete Field 0

5 O 1’b0 - Instruction Breaks implemented 0

6 O 1’b0 - Data Breaks implemented 0

7 O 1’b1 - Processor Breaks not implemented 1

10:8 O 3’b000 - no external PC trace 0

13:11 O 3’b000 - no external PC trace 0

16 O 1’b0 - M16 not supported 0

17 O 1’b0 - ICache does not keep DMA coherent 0

18 O 1’b0 - DCache does not keep DMA coherent 0

19 O 1’b1 - EJTAG_ADDR > 32 bits wide 1

20 O 1’b0 - Complex Breaks not supported 0

22:21 O 2’b10 - 8-bit ASID field in implementation 2’b10

23 O 1’b1 - sdbbp is Special2 Opcode 1

25:24 O 2’b00- No profiling support 0

29 D 1’b1 - Lexra Internal Trace Buffer implemented 1

Address 0x8 35:0 36-bit address register - note: Although DMA
accesses use 36-bit addresses, CPU
accesses use 32-bit addresses which will
appear right-justified in this register.

0

Data 0x9 31:0 32-bit data register 0

8.1.1. EJTAG TAP Registers

LX4580 Lexra Inc. Proprietary & Confidential 57

Rev 3.1 October 11, 2002 DO NOT COPY

Control 0xA 0 D PCBufTAC (PC Trace All Contexts) (R/W)
0 - single context traced (RST value)
1 - all contexts traced

0

5 O 1’b0 DLock not supported (R) 0

6 D DOC (Disable other contexts when in DM)
0 - other contexts not disabled when in DM
1 - other contexts disabled when in DM

0

10 O 1’b0 DMA Error is not supported (R) 0

13 O 1’b0 DMA Abort is not supported (R) 0

14 D SetDev
1 - Debug XCPN vector = 0xBFC00480

0

15 D ProbeEn
0 - Debug XCPN vector = 0xBFC00480

0

19 PrAcc Write not Read. Name incorrect in 2.0.0 0

20 O 1’b0 PerRst is not supported (R) 0

23 D PCBufEn (PC Trace Enable) (W1/R)
0 - Tracing stopped
1 - Start tracing

0

25:24 D PCBufMode (PC Trace Mode) (R/W)
2’b00 - Continuous trace mode
2’b01 - Trigger Stops Trace mode
2’b10 - Trigger Starts Trace mode
2’b11 - Reserved

0

26 O 1’b0 External PC trace not supported 0

28:27 D CDM (Context in DM) (R)
Displays the context currently in debug mode.
Only valid when BrkStatus (bit 3) is set.

0

30:29 D CXS (Context Select) (R/W
Context to be sent debug exception when Jtag-
Brk (bit 12) is set. Only valid when JtagBrk is
set.

0

31 D WasRst (CPU was reset) (R/W)
RST value 1’b0
Reset on a CPU reset. Probe can set this bit to
1 and if it is ever cleared a CPU reset has
occurred.

0

All 0xB 99:0 100-bit register containing concatenation of
Address, Data and Control registers

InternalTrace 0xC - D Data from internal trace buffers. Function
described below.

1

Table 30: EJTAG TAP Registers (Continued)

NAME OP Field O/D Implementation Specific Information Reset

Chapter 8. EJTAG (EJ)

58 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

8.1.2. EJTAG Registers in FF3 (DRSeg)

Below is a table of the options/differences in DRSeg registers with respect to EJTAG 2.0.0. DRSeg starts at
logical address 0xFF300000, from which the offsets below are shown.

Table 31: EJTAG DRSeg Registers

NAME Offset Field O/D Implementation Specific Information Reset

Debug Control 0 0 O Trace Mode not supported 0

1 O Mask Soft Reset not supported 0

2 O Memory Protection not supported 0

3 O Mask NMI in non DM not supported 0

29 O 1’b1 - Endianness (Big) 1

IBS 4 30 O 1’b1 - ASID supported in breaks 1

DBS 8 28 O 1’b1 - Data Break Enhancements 1

30 O 1’b1 - ASID supported in breaks 1

IBAn 0x100
+ 0x10n

1 O 1’b0 - No MIPS16 support 0

IBCn 0x104
+ 0x10n

1 O 1’b0 - Complex break no supported 0

21:20 D Context Value to match.
Causes match for specific context only when
CNTXuse enabled.

0

22 D CNTXuse (context match use)
0 - Match on any context
1 - Match on context given in Context Value

0

IBMn 0x108
+ 0x10n

1 O 1’b0 - No MIPS16 support 0

DBAn 0x200
+0x10n

31:2 Address to match 0

DBCn 0x204
+0x10n

1 O 1’b0 - Complex break not supported 0

12 O No Load Breaks supported
0 - data breaks enabled on loads
1 - data breaks disabled on loads

0

13 O No Store Breaks supported
0 - data breaks enabled on stores
1 - data breaks disabled on stores

0

21:20 D Context Value to match.
Causes match for specific context only when
CNTXuse enabled.

0

22 D CNTXuse (context match use)
0 - Match on any context
1 - Match on context given in Context Value

0

DBMn 0x204
+ 0x10n

31:2 Address Mask - 0 address is not masked
1 - address is masked

0

8.2. Description of LX4580 CPU Specific EJTAG features

LX4580 Lexra Inc. Proprietary & Confidential 59

Rev 3.1 October 11, 2002 DO NOT COPY

8.2. Description of LX4580 CPU Specific EJTAG features

8.2.1. Disable Other Contexts (DOC) EJTAG Control Register bit 6

This bit affects the behavior of the CPU only when a context is in DM. When this bit is set it causes other
contexts not in debug mode to be disabled no matter what the value of the Disable Context bits in the CP0
LX_CTRL registers. When there are no contexts in debug mode the running state of contexts is determined
by their Disable Contexts bits.

Note: there is a skid associated with DOC. Existing instructions in the pipeline complete before other
contexts are disabled.

When cleared the DOC bit has no affect.

8.2.2. Context Select (CXS) EJTAG Control Register Bits 30:29

The CXS bits allow selection of which context takes a debug exception on JtagBrk (EJC bit 12) being
asserted. Hence, the CXS bits are only valid when JtagBrk is asserted.

8.2.3. Context in Debug Mode (CDM) EJC Bits 28:27

The CDM bits report which context is in debug mode. These bits are only valid when BrkStatus (EJC bit 3) is
asserted.

DBVn 0x20c
+0x10n

31:0 D Data Value to Match. Only matched on
stores. Masked on loads.

0

PB*n 0x300* 31:0 O Processor Breaks not supported 0

Table 32: COP0 EJTAG registers

NAME
Addr/
Sel

Field O/D Implementation Specific Information Reset

Debug 23/0 6 O Debug Complex Break Status no supported 0

10 O Bus Error not supported 0

11 O TLB Exception not supported 0

13 O UTLB Miss not supported 0

14 O NMI Status not supported 0

28 O LSNM not supported 0

DEPC 24/0 31:0 As 2.0.0 0

DESAVE 31/0 31:0 As 2.0.0 0

Table 31: EJTAG DRSeg Registers (Continued)

NAME Offset Field O/D Implementation Specific Information Reset

Chapter 8. EJTAG (EJ)

60 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

8.2.4. CNTXUse & CNTX in Breakpoint Control Registers

The CNTXUse and CNTX bits in both Imatch and Dmatch control registers allow matches against a specific
context, or against all contexts.

8.2.5. Precise Data Breaks

Data Breaks are precise. The load or store that matches the data breakpoint will be squashed.

8.2.6. Data Value Break Loads

Data value breaks on loads are not supported.

8.2.7. EJTAG_ADDR (36-bit)

As the LX4580 has a 36-bit physical address space and a 32-bit logical address space the EJTAG_ADDR
register is 36-bits wide to accommodate the physical address.

EJTAG_ADDR is used for 2 functions determined by the DMA Acc bit in the EJC:

DMAAcc = 1 EJTAG_ADDR is read/write and contains the physical address for a DMA transfer.

DMAAcc = 0 EJTAG_ADDR is read-only and contains the logical address of a processor access (only valid
with PrAcc is set).

So when DMAAcc = 0 EJTAG_ADDR contains a 32-bit logical address in a 36-bit register. It is padded as
follows: {4’b0000, Logical Address}. This does not require a change in behavior, however. As this register is
read-only when DMAAcc=0 reading out EJTAG_ADDR only requires 32 shifts, as before, because the
logical address is right-justified.

8.2.8. PC Trace Buffer & TAC

8.2.8.1. Overview

The PC trace buffer provides real-time PC trace solution which does not restrict the speed of the CPU and
reduces the pin count which is prohibitive for normal PC trace with multiprocessor systems. It employs an
on-chip RAM to store compressed PC trace information for retrieval after-the-fact by the EJTAG probe.
Stored in the RAM is all the information needed to fully reconstruct the program flow.

If tracing is enabled, a buffer entry is written on every PC discontinuity. The buffer entry contains the target
of the discontinuity, the ASID, the number of sequential instructions executed since the last buffer entry was
written, and a trace-point indicator set if a trace point occurred since the last entry was written.

8.2.8. PC Trace Buffer & TAC

LX4580 Lexra Inc. Proprietary & Confidential 61

Rev 3.1 October 11, 2002 DO NOT COPY

8.2.8.2. CPU EJTAG Block Diagram

The diagram shows the structure of the PC trace buffer block (PCTB). The PCTB receives pipe-flow
information from COP0 every clock cycle. It reads and writes entries into the PCTB RAM.

The control of the PCTB comes from the EJTAG probe which can scan in and scan out control and data via
the TAP to initiate PCTB functions.

8.2.8.3. Block Descriptions

Figure 14: CPU EJTAG Block Diagram

COP0 This block sends W-stage signals to the PCTB providing all the
pipeline information needed to write buffer entries.
Thisinformation comes in the form of the W-stage PC, ASID,
contextand instruction-type code.

PCTB This block is the heart of the PC trace buffer. It receives control
from the probe via retimed registers in EJTAG control.

When tracing it tests the data from COP0 and decides when to
write a buffer entry. It also keeps a count of the sequential
instructions executed since the last buffer entry. It handles all
the RAM accounting keeping track of the Address, RAM
Address wrapping conditions and start/stop tracing conditions.

RAM This block contains the RAM used by the PCTB. It is about 50
bits wide, and 128 entries deep.

EJTAG Control This block contains all the retiming registers for control
information scanned in by the probe. It also containsthe
registers read/written by the probe to control the PCTB.

Probe This is the EJTAG probe. It is external to the chip. It controls
EJTAG by scanning data in and out of registers in EJTAG.

CP0 PCTB

EJTAG
Control,

Scan
& TAP

RAM

Probe

PC info

Type

Context Read Data

Addr

Write Data

R/W

TDI

TMS

JTCK

CPU EJTAG EJTAG LX2 LX2 off chip

CPU EJTAG EJTAG LX2 LX2 off chip

TDO

Chapter 8. EJTAG (EJ)

62 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

8.2.8.4. RAM Format

Here is the description of a buffer entry (assuming SEQ field width = 8):

Here is the description of a header entry:

Bit Name Description

0 VAL 1’b0 marker at the beginning of each entry to indicate
that the memory entry is ready to be scanned (through
the asynchronous interface)

1 TRIG a trigger occurred between this and the previous entry

9:2 SEQ number of sequential instructions since last entry (satu-
rates)

17:10 ASID ASID

48:17 PC PC (Logical Address)

Bit Name Description

0 VAL 1’b0 marker at the beginning of each entry to indicate
that the memory entry is ready to be scanned (through
the asynchronous interface)

4:1 SEQW Width of SEQ field in buffer

10:5 RSVD Reserved = 6’b000000

25:18 ASIDW Width of ASID field. Always 4’b0100

14:30 BUFE Number of valid buffer entries.

8.2.8. PC Trace Buffer & TAC

LX4580 Lexra Inc. Proprietary & Confidential 63

Rev 3.1 October 11, 2002 DO NOT COPY

8.2.8.5. Mode of Operation

PCTB function is controlled via bits in the EJTAG control register. These bits are bit 23 - PCBufEn
(previously “Sync”) bits 24-25 - PCBufMode (previously PClen) and bit 27 - PCBufTAC (trace all contexts).
Bit 29 in the Implementation Register informs the probe of the presence of the buffer and enables the
secondary definition of the four mode bits.

PCBufEn cannot be cleared directly by the probe. The hardware clears the bit in a number of cases:

1. Buffer full after a trigger (for trigger start and stop modes).

2. By the probe scanning 0x0c into JTAG Instruction register. (to read out buffer entries).

3. Changing the PCBufMODE bits.

PCTB for a Single Context

When PCBufEn=1 the trace buffer continues to fill until a stop condition occurs or debug mode is entered.
When debug mode enters, the trace buffer records an entry for the debug exception vector address (usually
0xff20_0200). On exiting debug mode, the trace buffer records the DEPC address.

In trigger-start mode, when a trigger breakpoint occurs, the trace buffer marks its most recent entry as the
beginning of the buffer. The trace buffer will continue to record entries until it wraps around to this start and
then will stop recording.

PCBufEna

 bit 23

a. PCBufEn is set by writing a 1 to it only during debug mode. A 0->1 transi-
tion resets the buffer.

PCBufMode
bits 25:24 Buffer Modeb

b. The buffer mode can be scanned in at any time, even when not in debug
mode. If the mode changes during tracing, PCBufEn will be cleared, stop-
ping trace.

1 00 Continuous wrap (reset-state)

1 01 Any trigger stops trace (“trigger-stop”)

1 10 Any trigger starts trace (“trigger-start”), trace

stops when buffer fullc

c. Buffer full means that it wrapped around to the first entry

1 11 Reserved

0 xx Buffer disabled/reset (reset-state)

PCBufTAC
bit 27 Contexts Traced

1 Trace all contexts

0 Trace context currently in debug mode.

Chapter 8. EJTAG (EJ)

64 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

In trigger-stop mode, the trace buffer continues to record entries until a trigger breakpoint occurs. The trace
buffer will then record one more entry.

When PC Trace stops, the PCBufEn will be cleared. The probe will then scan the data out of the buffer. To
restart the trace PCBufEn must be set. This resets the buffer.

To read the buffer, the probe reads each entry sequentially. A new TAP Instruction Register opcode selects
the buffer to be read. This opcode is 0x0C. The first time the probe scans the data register (DR) after scanning
in a 0x0C opcode, it gets the header that describes the widths of the entry fields and the number of entries.

When the TAP controller reaches the “update” state, the hardware reads the first entry into a scan buffer
(through an asynchronous interface since the memory will be operating using SYSCLK). By the time the
TAP comes back around to the first entry, the scan buffer will have the data from the first entry. To indicate
that data is ready, the first bit to be scanned is 1’b0. If for some reason the TAP controller is faster than the
asynchronous interface and data is not yet ready in the scan buffer, the hardware will scan out 1’b1 until data
is ready.

After the first entry has been scanned out, the TAP will leave the scan state. As it passes through the update
state, the next sequential entry is loaded into the scan register.

Note: that it is more traditional that the scan buffer be loaded in the “capture” state. However, since the
asynchronous interface is going to take several cycles, using the previous scan’s update state will get a head-
start on fetching the entry.

If the probe tries to scan out data past the number of entries given in the header, the data read back from 0x0c
will be 1’b1 indicating data not valid.

If the probe changes the JTAG instruction register from 0x0c, the buffer data will be lost. It cannot return to
0x0c and read out more data. If it does the data will again be 1’b1 - not valid.

PCTB for All Contexts

One extra mode of operation is added to support HMT - tracing of all contexts simultaneously. In this mode
data in the buffer is uncompressed and the SEQ field is used as a CONTEXT field to indicate to which
context the data corresponds. This information shows the interaction between threads.

Access to the buffer is the same as when a single context is being debugged.

When the probe starts PC trace all pointers and counters are reset such that any data in the buffer from the
previous trace will be lost.

8.2.9. Instruction Replay

One artifact of HMT is that some instructions (loads and stores) can be speculatively fetched or replayed.
When instructions are jammed there is a possibility that a particular load or store may have to be jammed a
number of times before it is executed. This condition is easily detected as the address reported in
EJTAG_ADDR will not increment when a REPLAY has occurred.

8.2.10. DMwait

The HMT CPU implements a DM Wait feature which prevents more than one context from executing in
Debug mode at any given time. As there is only one instance of various CP0 registers (such as DESAVE)
used to support Debug mode. Furthermore, the EJTAG probe software is unlikely to support intermixed
accesses to the Dmseg and Drseg regions. Therefore, after one context begins executing in Debug Mode (due
to an EJTAG exception) any other context which takes an EJTAG exception is placed in the DM Wait queue.

8.2.11. Debug Mode Overrides Disable Context

LX4580 Lexra Inc. Proprietary & Confidential 65

Rev 3.1 October 11, 2002 DO NOT COPY

While in the DM Wait state, the context does not issue any instructions. When the first context leaves Debug
Mode (by executing a DERET instruction), the next context in the DM Wait queue resumes execution (in the
EJTAG exception handler).

8.2.11. Debug Mode Overrides Disable Context

If a debug exception occurs on a context which is disabled via the Disable Context bits in the COP0
LX_CTRL, the context will become enabled whilst in debug mode. This will allow the debug exception to be
taken. On exit from debug mode the context will disabled as per its Disable Context bit.

8.2.12. EJTAG BOOT

Via EJTAG BOOT any LX4580 can start execution from probe space after reset. In this mode the reset vector
is changed to 0xFF200200. Thus the first instruction fetched by the LX4580 is from the probe.

This mode is controlled by the value of EJC.ProbeEn at reset. In order for the ProbeEn bit not to be reset itself
it has its own dedicated reset pin on lx2 - PRBENRST_D1_R_N. This pin should only be asserted on a cold
reset, and should not be asserted when JTAG_RST_N is asserted.

To enter EJTAG BOOT mode the following steps should be taken:

Power-up LX4580 normally and assert/de-assert cold reset (CRESET_N)

Connect the EJTAG probe to the LX4580 and set the ProbeEn bit in the EJTAG Control Register.

Assert/de-assert JTAG_RST_N

The LX4580 will now be fetching from 0xFF200200. The COP0 DEPC register will be 0x00000000.

8.2.13. The Lexra Probe

The Lexra Probe is internal logic which allows a host PC via an RS232 connection to control EJTAG in the
LX4580. A null modem cable is connected from the host PC to 2 pins on the LX4580 - EJTAG_RX and
EJTAG_TX pins. With this scheme no external probe is required as any PC can be connected to the LX4580
with great ease via a serial connection.

The Lexra Probe logic resides inside the EJTAG block.

EJTAG commands are sent to the Lexra Probe in ASCII over a RS232 UART connection. These commands
are translated into JTAG commands sent via the JTAG pins to the EJTAG logic. Responses to the commands
are returned in ASCII form from the Lexra Probe to the host.

Lexra provides software interfaces between the Lexra Probe and mainstream debugger tools such as GHS
and X-Ray.

8.2.14. Access to EJTAG Memory Space

The following table describes the target of different memory accesses as implemented by Lexra.

M- Main Memory

P- EJTAG Probe (DMSEG)

Reg - EJTAG Registers (DRSEG)

Chapter 8. EJTAG (EJ)

66 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

 Access Address

DBM ProbeEn FF2 FF3

0 0 M M

0 1 M M

1 0 P Reg (differs from EJTAG 2.0.0*)

1 1 P Reg

*For completeness, the EJTAG 2.0.0 specification has the following difference:

DBM ProbeEn FF2 FF3

1 0 M Reg

LX4580 Lexra Inc. Proprietary & Confidential 67

Rev 3.1 October 11, 2002 DO NOT COPY

Chapter 9. Interfaces

9.1. Interfaces

Table 33: Interface Summary

Name Pins Direction Description

Clocks and Reset (5 pins)

CPUCLK 1 input CPU core clock.

CPUCLK_N 1 input CPU core clock differential input.

CRESET_N 1 input Cold Reset.

JTAG_RST_N 1 input Connection from the EJTAG probe.

CFG_BIGENDIAN 1 input Static signal designating power-up endian mode.
 1 - big endian.
 0 - little endian.

Interrupts (4 pins)

HW_INT[4:1] 1 input External hardware interrupt lines. Active high.

Chip Test (4 pins)

JTAG_TDI 1 input JTAG test data in.

JTAG_TDO 1 output JTAG test data out.

JTAG_TMS 1 input JTAG test mode select.

JTAD_TCK 1 input JTAG clock.

EJTAG Software Debug (4 pins)

EJTAG_DTR 1 output EGJAG data terminal ready.

EJTAG_DSR 1 input EJTAG data set ready.

EJTAG_RXD 1 input EJTAG receive data.

ETJAG_TXD 1 output EJTAG transmit data.

EC Interface (186 pins)

See MIPS “ECtm Interface Specification”, Revision 1.05

EB_A[35:2] 34 output Address bus.

EB_ARDY 1 input System address ready.

EB_AVALID 1 output CPU address valid.

EB_BE[7:0] 8 output Byte enables.

EB_BFIRST 1 output First address cycle.

EB_BLAST 1 output Last address cycle.

EB_BLEN[1:0] 2 output Burst length (encoded).

EB_BURST 1 output Burst transaction.

EB_EWBE 1 input Write buffer empty.

Chapter 9. Interfaces

68 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

EB_INSTR 1 output Instruction transfer.

EB_RBERR 1 input Bus read error.

EB_RDATA[63:0] 64 input Read data.

EB_RDVAL 1 input Read data valid.

EB_SBLOCK 1 input Static configuration for sub-block ordering.

EB_WBERR 1 input Bus write error.

EB_WDATA[63:0] 64 output Write data.

EB_WDRDY 1 input Write data system ready.

EB_WRITE 1 output Write transfer.

WB_WWBE 1 output Wait for write buffer empty.

CBUS_Z Interface (182 pins)

CBUS_ZREQO 1 output 0 - no request, 1 - processor is initiating a request

CBUS_ZBUSYI 1 input 1 - External logic cannot accept request. The cur-
rent CBUS_Z request, if any, is ignored by external
logic.
0 - External logic is ready to accept a request.

CBUS_ZADDRO[35:0] 36 output Address

CBUS_ZREADO 1 output 1=Read, 0=Write

CBUS_ZSYNCO 1 output 1=Sync request, 0=Normal Request
(CBUS_ZREAD will indicate write on sync cycles)

CBUS_ZSZO[1:0] 2 output Transfer size
 2’b00 - 1 byte
 2’b01 - 2 bytes
 2’b10 - 3 bytes
 2’b11 - 1 word
 This signal is don’t care when CBUS_ZLINEO is
asserted.

CBUS_ZLINEO 1 output 1 - line access, 0 - single access

CBUS_ZDATAO[63:0] 64 output Write Data

CBUS_ZLTIDO[1:0] 2 output Local thread ID

CBUS_ZUCO 1 output 1 - uncached access, 0 - cached access

CBUS_ZSRCO[1:0] 2 output transaction source (within LX4580):
 2’b00 Instruction Cache
 2’b01 Data Cache
 2’b10 EJTAG
 2’b11 reserved

CBUS_ZRDYI 1 input Read data is available

Table 33: Interface Summary

Name Pins Direction Description

9.1. Interfaces

LX4580 Lexra Inc. Proprietary & Confidential 69

Rev 3.1 October 11, 2002 DO NOT COPY

CBUS_ZDBUSYO 1 output 1 - LX4580 is not ready to receive Data. External
logic must hold CBUS_ZDATAI, CBUS_ZLTIDI,
and CBUS_ZVALTYPEI until CBUS_ZDBUSYO is
de-asserted.
0 - LX4580 is ready to receive Data.

CBUS_ZDATAI[63:0] 64 input Read Data

CBUS_ZLTIDI[1:0] 2 input Thread associated with Read Data

CBUS_ZVALTYPEI[1:0] 2 input Indicates read data type:
 2’b00 Instruction Cache
 2’b01 Data Cache
 2’b10 EJTAG
 2’b11 reserved

Table 33: Interface Summary

Name Pins Direction Description

Chapter 9. Interfaces

70 Lexra Inc. Proprietary & Confidential LX4580

DO NOT COPY Rev 3.1 October 11, 2002

	Chapter 1. LX4580 Product Overview
	1.1. Introduction
	1.2. Key Features
	1.3. Specifications
	1.4. LX4580 Architecture
	1.4.1. LX4580 CPU
	1.4.2. Fine-Grained Hardware Multi-Threading (HMT)

	1.5. Interfaces
	1.6. Software Support
	1.6.1. Operating Systems
	1.6.2. Development Tools

	Chapter 2. MIPS32 Implementation Specifics
	2.1. MIPS32 Implementation Specifics Overview
	2.2. MIPS32 Instructions
	2.2.1. LL/SC
	2.2.2. SYNC
	2.2.3. PREF
	2.2.4. CACHE
	2.2.5. WAIT
	2.2.6. Divide (all variants)
	2.2.7. UDI

	2.3. CP0 Registers
	2.4. Interrupts
	2.5. Exceptions
	2.5.1. Reset Context Wait and EJBOOT
	2.5.2. DM Wait and EJTAG (Debug) Exceptions

	2.6. Address Spaces
	2.6.1. Non-Coherence for Different Access Types

	2.7. Endianness
	2.8. EJTAG
	2.9. CP0 Hazards
	2.10. Performance Counters
	2.11. Release 2 Architecture Support
	2.11.1. Release 2 Interrupt Modes, Exceptions, Shadow GPRs
	2.11.2. Hazard Barrier Instructions
	2.11.3. Field, Rotate, Shuffle Instructions
	2.11.4. User Access to Hardware Registers
	2.11.5. CP0 Register Changes
	2.11.6. 64-bit Coprocessor (FPU)
	2.11.7. 1KB Pages

	Chapter 3. Reset (RST)
	3.1. Reset Overview
	3.2. Reset Distribution
	3.3. Reset Operation
	3.4. Reset External LX4580 Interfaces

	Chapter 4. LX4580 CPU
	4.1. LX4580 CPU Overview
	4.2. LX4580 CPU Core
	4.3. Instruction Cache
	4.4. Data Cache
	4.5. Cache Line Replacement Algorithm
	4.6. CPU Error Handling
	4.6.1. Bus Error Handling (IBE and DBE)
	4.6.2. Interrupt Error Response (NMI)

	Chapter 5. CBUS_Z Interface (ZBI)
	5.1. CBUS_Z Interface Overview
	5.2. CBUS�_Z Interface Signal List
	5.3. CBUS_Z Endian Mode
	5.4. CBUS_Z Line Read Interleave Order
	5.5. CBUS_Z Read Completion
	5.6. CBUS_Z Transaction Types
	5.7. CBUS_Z Protocol
	5.8. CBUS_Z Transaction Timing Diagrams
	5.8.1. Back-to-Back Sub-Line Writes with Busy
	5.8.2. Line Writes
	5.8.3. Read Request
	5.8.4. Returning Read Data

	Chapter 6. EC Interface (ECI)
	6.1. Overview
	6.2. EC Interface Signals
	6.3. EC Interface Endian Mode
	6.4. EC Interface Pending Requests
	6.5. EC Interface Gasket Overview
	6.6. Supported Configurations
	6.7. Implementation Guidance for Endian Mode
	6.7.1. Consistency of Endian Mode in the System
	6.7.2. Address Invariance
	6.7.3. Data Invariance
	6.7.4. Reverse Endian Support Not Recommend
	6.7.5. Endian Mode and Unaligned Load/Store

	6.8. CBUS_Y Interface
	6.8.1. CBUS_Y Endian Mode
	6.8.2. CBUS_Y Command Encoding
	6.8.3. RLE & RLME Eviction Address

	6.9. IBUS Interface
	6.9.1. IBUS Header Encoding

	6.10. ECI Actions on CBUS_Y Commands

	Chapter 7. Interrupts
	7.1. Interrupt Overview
	7.1.1. Cross Context Interrupt Request Register (CCI_Req)
	7.1.2. CCI_IntPend Register (One per context)
	7.1.3. CCI_IntMask Register (One per context)

	Chapter 8. EJTAG (EJ)
	8.1. EJTAG Differences from 2.0.0.
	8.1.1. EJTAG TAP Registers
	8.1.2. EJTAG Registers in FF3 (DRSeg)

	8.2. Description of LX4580 CPU Specific EJTAG features
	8.2.1. Disable Other Contexts (DOC) EJTAG Control Register bit 6
	8.2.2. Context Select (CXS) EJTAG Control Register Bits 30:29
	8.2.3. Context in Debug Mode (CDM) EJC Bits 28:27
	8.2.4. CNTXUse & CNTX in Breakpoint Control Registers
	8.2.5. Precise Data Breaks
	8.2.6. Data Value Break Loads
	8.2.7. EJTAG_ADDR (36-bit)
	8.2.8. PC Trace Buffer & TAC
	8.2.9. Instruction Replay
	8.2.10. DMwait
	8.2.11. Debug Mode Overrides Disable Context
	8.2.12. EJTAG BOOT
	8.2.13. The Lexra Probe
	8.2.14. Access to EJTAG Memory Space

	Chapter 9. Interfaces
	9.1. Interfaces

